
Inquisit 3 Help

Inquisit is a general purpose experimentation engine for designing and administering
psychological experiments and measures. Inquisit can be used to collect a wide range of
psychological data, including reaction time tasks, psychophysiological experiments, attitude
measures, market research, and subjective questionnaires.

An Inquisit experiment is speci!ed using Inquisit's powerful and intuitive scripting language. The
script de!nes all of the pieces of the experiment such as the stimuli, questionaire items, trials,
blocks of trials, instructions, as well as the logic determining the "ow of events. An Inquisit script
is saved as a plain text !le with the *.exp !le extension. The script !le can be opened, edited, and
run using the Inquisit editor.

The Inquisit scripting language consists of two simple syntactic constructions - elements and
attributes. Elements correspond to the things that make up a script, including surveys, survey
pages, experiments, blocks, trials, stimuli, instruction pages, the data !le, and so forth. Each
element, in turn, has a set of attributes that determine exactly how that element behaves. For
example, Inquisit's text element, which de!nes a set a text stimuli, has attributes that specify the
color, font, and screen location to present the text.

The Inquisit language was designed to be easy and approachable to nonprogrammers who are
familiar with the basics of experimental psychology. The structure of the Inquisit scripting
language should be familiar to anyone who has edited HTML. However, some of the
cumbersome aspects of HTML syntax have been streamlined to make Inquisit scripts easier to
read and write. Writing an Inquisit script is simply a matter of de!ning the elements of your
experiment and setting their attributes to the desired values. Once you understand this basic
idea, it's just a matter of familiarizing yourself with the details of the elements and attributes. To
get started learning how to write Inquisit scripts, read through the tutorials.

Inquisit scripts are written and run using the Inquisit editor. Once you have written an
experiment, you issue commands from Inquisit's menu to run parts of the experiment or the
whole thing. When a script is run, Inquisit !rst parses its commands. If the script contains no
errors, it runs. Otherwise, Inquisit reports the errors in the righthand panel of the editor. Note
that Inquisit does not compile a script into an executable !le that can be run by itself. Running a
script thus requires that the Inquisit program or web control be installed on the machine

As Inquisit Desktop Edition runs an experiment, it writes the data to a !le. By default, the data !le
is located in the same folder as the script !le using the same name as the script !le except that
the !le extension is changed to "dat". By default, Inquisit Web Edition saves data !les to the
Inquisit web server where you can log in and download the !les.

http://www.millisecond.com/support/docs/v3/html/language/elements/survey.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/survey.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/expt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/expt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/picture.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/picture.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/page.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/page.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/text.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/text.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/tutorials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/tutorials.htm

For reaction time tasks, each line of data in the !le corresponds to a single trial. For
questionnaires, all responses from each participant are stored on a single line. Inquisit data !les
can be imported directly into programs like SPSS and Excel for analysis. Inquisit can be
con!gured to record

metrics such as mean and median response latencies, standard deviations, percentage of correct
response, and even custom statistics, but for most purposes, it is necessary to analyze the data
using a statistical analysis program.

To learn Inquisit, we suggest the following:

1. Read through the tutorials.
2. Download and run some of the sample experiments.
3. Make minor modi!cations to a sample using the language reference as your guide (tip:

from the editor, press F1 and the reference topic for the currently selected element will
open). Observe your modi!cations using the Object Browser.

4. Read through the How To section.

http://www.millisecond.com/support/docs/v3/html/tutorials/tutorials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/tutorials.htm
http://www.millisecond.com/samples/
http://www.millisecond.com/samples/
http://www.millisecond.com/support/docs/v3/html/language/languagereference.htm
http://www.millisecond.com/support/docs/v3/html/language/languagereference.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtoobjectbrowser.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtoobjectbrowser.htm
http://www.millisecond.com/support/docs/v3/html/howto/howto.htm
http://www.millisecond.com/support/docs/v3/html/howto/howto.htm

Inquisit Tutorials

The following tutorials will guide you through the process of implementing a variety of different
data collection procedures.

Creating an experiment or survey is a simple matter of editing script containing instructions and
con!guration settings telling Inquisit what to do, when to do it, and which data to record (e.g.
reaction times, survey responses).

The text that Inquisit uses to perform a set of operations is called a script, typically saved as a !le
with the *.exp !le extension. If you installed Inquisit using the default options, the scripts for the
tutorials were installed under the C:\Program Files\Millisecond Software\Inquisit 3\tutorials\
directory.

Simpli!ed Implicit Attitude Task This is a stripped down nonstandard version of the IAT that
illustrates basic Inquisit programming concepts. The script for this tutorial is in the !le
iat_tutorial.exp.

Standard IAT This shows how to modify a standard IAT using your own attribute and target
categories. The script for this tutorial is in the !le Standard IAT.exp.

Demographic Survey The script for this tutorial is in the !le demographics.exp.

Standard Picture IAT This builds a standard picture IAT from scratch. The tutorial is in the !le
pictureiat.exp.

Subliminal Priming Task The script for this tutorial is in the !le subliminal_tutorial.exp.

Covert Attention Task The script for this tutorial is in the !le ca_tutorial.exp.

Dot probe Task The script for this tutorial is in the !le ca_tutorial.exp.

http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic%20survey/surveytutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic%20survey/surveytutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminaltutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminaltutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert%20attention/catutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert%20attention/catutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot%20probe/dottutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot%20probe/dottutorial.htm

Tutorial: Standard Implicit Attitude Task

This tutorial demonstrates how to create a standard Implicit Attitude Task (IAT) as developed by
Tony Greenwald et al. The tutorial starts with an IAT that measures implicit attitudes towards
"owers and insects, and shows how to adapt the task to measure other target categories.

On the following pages, Inquisit commands are printed in blue, and comments are printed in
black:

Steps

1. Modifying Attribute Categories
2. Modifying Target Categories
3. Modi!ng Task Instructions
4. Changing Response Keys

1-Modifying Attribute Categories

The !rst step in creating your custom IAT is to open the sample IAT task that ships with Inquisit.
Open the sample by clicking the Window Start menu and selecting All Programs->Inquisit 3-
>Tutorial Scripts->Standard IAT. The Standard IAT measures attitudes towards "owers verses
insects. In this tutorial, we will adapt the IAT to measure attitudes towards other target
categories (we'll use the example of men verses women, but you can just as easily substitute any
category of interest).

The Standard IAT script was organized so that the portions to be modi!ed are conveniently
located at the top of the document. The !rst thing you'll see at the top is a comment with helpful
instructions on modifying the stimuli:

This sample IAT can be easily adapted to different target categories
and attributes. To change the categories, you need only change the
stimulus items and labels immediately below this line.

http://www.millisecond.com/support/docs/v3/html/tutorials/iat/attributes.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/attributes.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/targets.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/targets.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/instructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/instructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/response.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/iat/response.htm

This text is simply a comment for someone authoring a script. It is not a part of the IAT itself, and
does not have any impact on how the script runs.

The next section of the script shows attribute labels along with the stimulus items that serve as
examples of either attribute category:

<item attributeAlabel>
/1 = "Good"
</item>

<item attributeA>
/1 = "Marvelous"
/2 = "Superb"
/3 = "Pleasure"
/4 = "Beautiful"
/5 = "Joyful"
/6 = "Glorious"
/7 = "Lovely"
/8 = "Wonderful"
</item>

<item attributeBlabel>
/1 = "Bad"
</item>

<item attributeB>
/1 = "Tragic"
/2 = "Horrible"
/3 = "Agony"
/4 = "Painful"
/5 = "Terrible"
/6 = "Awful"
/7 = "Humiliate"
/8 = "Nasty"
</item>
For our IAT, we will change the attributes labels to "Strong" and "Weak" in order to measure how
attitudes towards men and women conform to gender stereotyping, and we'll change the
stimulus items to examples of these categories.

<item attributeAlabel>
/1 = "Strong"
</item>

<item attributeA>
/1 = "Power"
/2 = "Command"
/3 = "Dominant"
/4 = "Succeed"
/5 = "Assert"
/6 = "Con!dent"
/7 = "Control"
/8 = "Bold"
</item>

<item attributeBlabel>
/1 = "Weak"
</item>

<item attributeB>
/1 = "Timid"
/2 = "Submissive"
/3 = "Fragile"
/4 = "Follow"
/5 = "Fail"
/6 = "Obey"
/7 = "Hesitant"
/8 = "Uncertain"
</item>
There, that was pretty easy. At this point, we have an IAT that measures implicity associations of
"owers and insects as weak or strong. While this may be of interest to botanists and
entomologists, the next step for us is to modify the target categories to measure attiitudes
towards men and women.

2-Modifying Target Categories

The next section of the IAT script contains the de!ntions of the target category labels and
stimulus items. The syntax is identical to the attribute de!nitions, only the items and item names
are different:

<item targetAlabel>
/1 = "Flowers"
</item>

<item targetA>
/1 = "Orchid"
/2 = "Lily"
/3 = "Violet"
/4 = "Daisy"
/5 = "Tulip"
/6 = "Poppy"
/7 = "Daffodil"
/8 = "Lilac"
</item>

<item targetBlabel>
/1 = "Insects"
</item>

<item targetB>
/1 = "Ant"
/2 = "Locust"
/3 = "Bee"
/4 = "Wasp"
/5 = "Beetle"
/6 = "Termite"
/7 = "Roach"
/8 = "Moth"
</item>
The labels are de!ned in <item targetAlabel> and <item targetBlabel>, and the stimulus items
are de!ned in <item targetA> and <item targetB>. First, we'll change our target labels and
stimuli for category A, men, as follows:

<item attributeAlabel>
/1 = "Men"
</item>

<item attributeA>
/1 = "James"
/2 = "Robert"
/3 = "Steve"

/4 = "Henry"
/5 = "Tony"
/6 = "Sean"
/7 = "John"
/8 = "William"

</item>
Next we'll create change the label and stimuli for category B, women:

<item attributeBlabel>
/1 = "Women"
</item>

<item attributeB>
/1 = "Debbie"
/2 = "Shelly"
/3 = "Karen"
/4 = "Anya"
/5 = "Susan"
/6 = "Wendy"
/7 = "Michelle"
/8 = "Jane"
</item>
If you're goal is to simply to adapt the IAT to a particular set of attributes and targets, I have good
news. You're done! To run your IAT, just select the Run command on Inquisit's Experiment menu.
Now go collect some data.

In the next section, we'll cover where task instructions for in the IAT are de!ned in case you need
to modify the text or translate the instructions to another language.

3-Modifying Task Instructions

The IAT sample includes general instructions that have been written to apply to any standard IAT,
regardless of the attributes or targets. However, if you are administering the IAT to a population
that doesn't speak English, or that would bene!t from additional or specially worded
instructions, you can easily modify the text to suit your needs.

If you scroll down below the target category de!nitions, you'll !nd the following element, which
speci!es the text for 7 pages of instructions that appear throughout the IAT. Instructions are
de!ned using the <item> element, just as the attribute and target stimuli were. One difference,
however, is that the instruction items formatted with line breaks, which helps make them more
readable when presented on the screen.

<item instructions>
/ 1 = "Put your middle or index !ngers on the E and I keys of your keyboard. Words representing
the categories at the top will appear one-by-one in the middle of the screen. When the item
belongs to a category on the left, press the E key; when the item belongs to a category on the
right, press the I key. Items belong to only one category. If you make an error, an X will appear -
!x the error by hitting the other key.

This is a timed sorting task. GO AS FAST AS YOU CAN while making as few mistakes as possible.
Going too slow or making too many errors will result in an uninterpretable score. This task will
take about 5 minutes to complete."
/ 2 = "See above, the categories have changed. The items for sorting have changed as well. The
rules, however, are the same.

When the item belongs to a category on the left, press the E key; when the item belongs to a
category on the right, press the I key. Items belong to only one category. An X appears after an
error - !x the error by hitting the other key. GO AS FAST AS YOU CAN."
/ 3 = "See above, the four categories you saw separately now appear together. Remember, each
item belongs to only one group. For example, if the categories "ower and good appeared on the
separate sides above - words meaning "ower would go in the "ower category, not the good
category.

The green and white labels and items may help to identify the appropriate category. Use the E
and I keys to categorize items into four groups left and right, and correct errors by hitting the
other key."

/ 4 = "Sort the same four categories again. Remember to go as fast as you can while making as
few mistakes as possible.

The green and white labels and items may help to identify the appropriate category. Use the E
and I keys to categorize items into the four groups left and right, and correct errors by hitting the
other key."

/ 5 = "Notice above, there are only two cateogries and they have switched positions. The concept
that was previously on the left is now on the right, and the concept that was on the right is now
on the left. Practice this new con!guration.

Use the E and I keys to catgorize items left and right, and correct errors by hitting the other key."
/ 6 = "See above, the four categories now appear together in a new con!guration. Remember,
each item belongs to only one group.

The green and white labels and items may help to identify the appropriate category. Use the E
and I keys to categorize items into the four groups left and right, and correct errors by hitting the
other key."
/ 7 = "Sort the same four categories again. Remember to go as fast as you can while making as
few mistakes as possible.

The green and white labels and items may help to identify the appropriate category. Use the E
and I keys to categorize items into the four groups left and right, and correct errors by hitting the
other key."
</item>
You can modify the instruction pages just as you did the attributes and category items, by simply
editing the text within quotation marks.

If you make signi!cant change to the instructions, you might also need to change the size and
location at which the text is presented on the screen. The element that controls how instruction
text is presented is the following:

<text instructions>
/ items = instructions
/ hjustify = left
/ size = (90%, 60%)
/ position = (50%, 85%)
/ valign = bottom
/ select = instructions
</text>
The <text> element is used to de!ne how a set of text items are presented. The !rst command in
the element, / items = instructions, speci!es that the actual text items are de!ned in an <item>
element called "instuctions", which is the <item instruction> element we just covered above.
The / hjustify = left command speci!es that text should be left justi!ed. You can also set this to
"center" or "right" (e.e., for right to left languages like Hebrew). The / size = (90%, 60%) speci!es
the size of the bounding rectangle in which the text should be presented (and words are
wrapped). In this case, the width is 90% of the screen, and the height is 60%.

By using percentages, the size will scale across monitors with different display resolutions. The /
position = (50%, 85%) command speci!es the position on the screen, which is the located
horizontally at the midpoint of the screen and 85% of the way veritically towards the bottom.
The /valign = bottom command speci!es that the bottom of the bounding rectangle containing
the text should align with the point on the screen speci!ed by the position command. The rest
we'll ignore for now.

Note that if you need to resize the text itself, you can do so using the /fontstyle command. To
change the fontstyle, insert the cursor inside the <text instructions> element and select the
"Font Wizard" command from the Tools menu. This will launch a graphical font picker that will
allow you to choose the font parameters and insert the corresponding /fontstyle command into
the script.

4-Changing Response Keys

By default, the IAT uses the E and I keys to indicate a left and right response. The response keys
are de!ned using the <trial> element, which is rseponsible for presenting stimuli and gathering
responses. The IAT has six different <trial> elements. The !rst two, shown below, present stimuli
from attribute A and attribute B respectively:

<trial attributeA>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = attributeA]
/ posttrialpause = 250
</trial>

<trial attributeB>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = attributeB]
/ posttrialpause = 250
</trial>
The validresponse command de!nes two permissible responses for either trial, "E" and "I". The
correctresponse de!nes which of these responses is considered correct for purposes of scoring
and error feedback. For attribute A, the "E" key is always correct. For attribute B, the "I" key is
correct. You can change the keys used for responding by replacing "E" and "I" with whatever
character you like. If you are using another input device such as a response box, you can replace
these with the numeric values corresponding to the buttons.

The remaining four trials present targets A and B. Recall that the IAT presents the targets with
both compatible and incompatible attribute pairings, so there are two trials de!ned for each
target category that vary in whether "E" or "I" is considered the correct response. Again, the
particular keys used can be modi!ed as they were with the attribute trials.

<trial targetBleft>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = targetB]
/ posttrialpause = 250
</trial>

<trial targetBright>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = targetB]
/ posttrialpause = 250
</trial>

<trial targetAleft>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = targetA]
/ posttrialpause = 250
</trial>

<trial targetAright>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = targetA]
/ posttrialpause = 250
</trial>
The tutorial is now complete! You can run the IAT by selecting the "Run" command on the
"Experiment" menu.

Tutorial: Standard Picture IAT

This tutorial builds an Implicit Attitude Task (IAT) modeled after the version that runs on the
Project Implicit web site (www.projectimplicit.org). This version of the task measures implicit
attitudes towards "owers and insects as represented by pictures.

This tutorial walks through the process of building an IAT from scratch. If your goal is simply to
adapt the IAT to your own attribute and target categories, you need only make a few simple
modi!cations to the sample script as indicated at the end of the section on creating text stimuli;
you can skip the rest. This tutorial will be of interest to anyone interested in the details of the IAT
procedure, or who wishes to modify the procedure. The tutorial also illustrates a number of
intermediate and advanced concepts that are relevant to other procedures besides the IAT.

On the following pages, Inquisit commands are printed in blue, and comments are printed in
black:

Steps

1. Creating Text and Picture Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

1-Creating Text and Picture Stimuli

The !rst step in creating our script is to de!ne the various stimuli that will be presented in the
IAT. In this case, the stimuli will be a mix of text (good and bad words) and pictures ("owers and
insects). Other stimuli include task instructions, a big red "X" for an error message, and category
labels to remind participants which response keys map to which categories.

The good and bad text stimuli are de!ned as follows:

<text attributeA>
/ items = attributeA
/ txcolor = (0, 255, 0)
</text>

<text attributeB>
/ items = attributeB
/ txcolor = (0, 255, 0)
</text>

http://www.projectimplicit.org/
http://www.projectimplicit.org/
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingexpt.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiatcreatingexpt.htm

The txcolor attribute sets the red, green, and blue components of the text color. Green is set to
the maximum value, wherease red and blue are 0, so both sets of words will appear green. The
actual words in the set are speci!ed separately in item elements called "attributeA" and
"attributeB", which are de!ned below. We'll use generic names like "attribruteA" throughout the
script to illustrate that the script contains mostly generic IAT logic that can be easily adapted to
different target categories and attributes.

Next, we'll de!ne the pictures representing the target categories, "owers and insects:

<picture targetB>
/ items = targetB
/ size = (20%, 20%)
</picture>

<picture targetA>
/ items = targetA
/ size = (20%, 20%)
</picture>
Like the text elements, the items are de!ned in separate item elements. The size of the pictures is
set to 20% of the height and width of the screen. In fact, all sizes for pictures and text in this
script will be de!ned in terms of percentage of the screen. This allows the IAT to scale
proportionally to different monitor sizes, making it suitable for the web where users run a wide
range of display systems.

Now we'll de!ne the category labels that appear in the upper left and right corners of the screen.
The attribute labels are as follows:

<text attributeAleft>
/ items = attributeAlabel
/ valign = top
/ halign = left
/ position = (5%, 5%)
/ txcolor = (0, 255, 0)
</text>

<text attributeBright>
/ items = attributeBlabel
/ valign = top
/ halign = right
/ position = (95%, 5%)
/ txcolor = (0, 255, 0)
</text>

The !rst label is presented in the upper left corner at a 5% margin from the upper and left edges
of the screen as de!ned by the position attribute. The second label is presented in the upper
right corner of the screen, again with 5% margins. The color of both labels is green, just like the
stimuli themselves. The items attribute speci!es that the actual label text is de!ned in an item
elements below.

Now for the target labels. These are similar to the attribute labels, except that they are presented
in the default text color (we'll set the default to white later in the tutorial).

<text targetAleft>
/ items = targetAlabel
/ valign = top
/ halign = left
/ position = (5%, 5%)
</text>

<text targetBright>
/ items = targetBlabel
/ valign = top
/ halign = right
/ position = (95%, 5%)
</text>
Recall that in the IAT, the target categories switch sides midway through the test, so we'll also
de!ne labels that place category A on the right and B on the left:

<text targetBleft>
/ items = targetBlabel
/ valign = top
/ halign = left
/ position = (5%, 5%)
</text>

<text targetAright>
/ items = targetAlabel
/ valign = top
/ halign = right
/ position = (95%, 5%)
</text>
Next we'll create category labels for the critical trials where the targets and attributes are mixed
together, for example, "Flowers or Good" and "Insects or Bad". On these trials, we'll present the
target labels we created above. Just below those labels we'll present the word "or", and just
below those the attribute labels will be presented:

<text orleft>
/ items = ("or")
/ valign = top
/ halign = left
/ position = (5%, 12%)
</text>

<text attributeAleftmixed>
/ items = attributeAlabel
/ valign = top
/ halign = left
/ position = (5%, 19%)
/ txcolor = (0, 255, 0)
</text>
These labels are similar to those above, except that the position attribute speci!es that the "or"
label be presented 12% of the way from the top of the screen just below the target label. The
attribute label appears 19% of the way down the screen below the "or". Now we'll create the
corresponding labels for the right side of the screen:

<text orright>
/ items = ("or")
/ valign = top
/ halign = right
/ position = (95%, 12%)
</text>

<text attributeBrightmixed>
/ items = attributeBlabel
/ valign = top
/ halign = right
/ position = (95%, 19%)
/ txcolor = (0, 255, 0)
</text>
That does it for the labels. Now we'll de!ne instruction text:

<text instructions>
/ items = instructions
/ hjustify = left
/ size = (90%, 60%)
/ position = (50%, 85%)
/ valign = bottom
/ select = instructions
/ fontstyle = ("Arial", 3.5%)
</text>

The instructions text element differs from the others above in that it uses the size attribute to
de!ne a rectangle within which the presented text is word-wrapped. This is useful for displaying
sentences and paragraphs. The hjustify command speci!es that text should be left justi!ed
within this rectangle. Whereas the previous text elements use the default font, the instructions
element speci!es the "Arial" font at 3.5% of the screen height.

The !nal difference to note is the select attribute. There are a total of 7 instruction items (de!ned
below). Each time this text element is presented, a different item is selected for presentation. The
select attribute speci!es that the rules for selecting the next item are contained in a counter
element named instructions, which is de!ned as follows:

<counter instructions>
/ resetinterval = 20
/ select = sequence(1, 2, 3, 4, 5, 6, 7)
</counter>
The counter element allows you to create a customized selection algorithm. In this case, the
counter's select attribute speci!es that items should be selected in sequence (1, 2, 3, 4, 5, 6, 7).
What does the resetinterval mean? By default, counters only remember selection for the duration
of a single block. Once that block is over, the counter is reset, its memory erased, so that next
time it is used for selection, it will start the sequence from the begining. The resetinterval
attribute speci!es how many blocks the counter memory lasts. We want the counter to track the
state of the sequence for the duration of the experiment, so we've set it here to an arbitrary high
number of 20. Any number greater than the number of blocks in the IAT would do the trick here.

Next we'll create a simple text that tells participants to hit the space bar to advance past the
instructions. This appears in the lower middle of the screen beneath the instructions text.

<text spacebar>
/ items = ("Press the SPACE BAR to begin.")
/ position = (50%, 95%)
/ valign = bottom
/ fontstyle = ("Arial", 3.5%)
</text>
Just one last text element to create and we'll move on to the actual item sets used by some of
the stimuli above.

<text error>
/ position = (50%, 75%)
/ items = ("X")
/ color = (255, 0, 0)
/ fontstyle = ("Arial", 10%, true)
</text>

The element above creates an error stimulus, which is a big red "X", presented in a bold Arial font
that is 10% of the height of the screen. Hard for our participants to miss that.

If you're goal is simply to adapt the IAT to a speci!c set of target and attribute categories, the last
section below is by far the most interesting. This section de!nes the labels and members of each
category. The logic contained in the rest of the script is generic to any category. Thus, in order to
change the categories, we can make all of our modi!cations here and leave the rest of the IAT
procedure as is.

First we'll de!ne the label and members of the "Good" category:

<item attributeAlabel>
/1 = "Good"
</item>

<item attributeA>
/1 = "Marvelous"
/2 = "Superb"
/3 = "Pleasure"
/4 = "Beautiful"
/5 = "Joyful"
/6 = "Glorious"
/7 = "Lovely"
/8 = "Wonderful"
</item>
Next we'll de!ne the label and members of the "Bad" category:

<item attributeBlabel>
/1 = "Bad"
</item>

<item attributeB>
/1 = "Tragic"
/2 = "Horrible"
/3 = "Agony"
/4 = "Painful"
/5 = "Terrible"
/6 = "Awful"
/7 = "Humiliate"
/8 = "Nasty"
</item>

Our IAT will test participants' preferences for "owers or insects, so the following specify the
labels and pictures !les for these categories:

<item targetAlabel>
/1 = "Flowers"
</item>

<item targetA>
/1 = ""ower1.jpg"
/2 = ""ower2.jpg"
/3 = ""ower3.jpg"
/4 = ""ower4.jpg"
/5 = ""ower5.jpg"
/6 = ""ower6.jpg"
/7 = ""ower7.jpg"
/8 = ""ower8.jpg"
</item>

<item targetBlabel>
/1 = "Insects"
</item>

<item targetB>
/1 = "insect1.jpg"
/2 = "insect2.jpg"
/3 = "insect3.jpg"
/4 = "insect4.jpg"
/5 = "insect5.jpg"
/6 = "insect6.jpg"
/7 = "insect7.jpg"
/8 = "insect8.jpg"
</item>
That's does it for stimuli. This section has demonstrated a number of concepts, including
presenting pictures and text, controlling stimulus size and position on the screen, specifying
size, color, and face of a font, using a custom algorithm for stimulus item selection, and more.

2-Creating Instructions

Instructions can be presented as text stimuli like those created in the previous section. Inquisit
also provides a built-in facility for presenting instruction pages in HTML or plain text. In this
tutorial, we will use this facility to present a summary of the participant's performance.

The summary page is de!ned as follows:

 <page summary>
^Below is a summary of your average response time for two different con!gurations.
^^Con!guration 1: <% item.targetAlabel.1 %> with <% item.attributeAlabel.1 %>, <%
item.targetBlabel.1 %> with <% item.attributeBlabel.1 %>
^ <%block.compatibletest.meanlatency%> milliseconds
^^Con!guration 2: <% item.targetAlabel.1 %> with <% item.attributeBlabel.1 %>, <%
item.targetBlabel.1 %> with <% item.attributeAlabel.1 %>
^ <%block.incompatibletest.meanlatency%> milliseconds
^^Did you respond much more quickly on one of the con!gurations than the other? If so, that
con!guration may be more consistent with your attitudes about these categories.
^^Thank you for your participation. Please press 'Continue' to end the test.
</page>
The "^" character is used to force a line break when the page is presented on screen. The page
also includes several properties enclosed in "<% %>". When the page is displayed, these
properties are replaced by the actual underlying property values. For example, <%
block.compatibletest.meanlatency %> is replaced by the mean latency on the block named
"compatibletest", and <% item.targetAlabel.1 %> is replaced by the !rst item in the item set
named "targetAlabel".

Next we'll create the instruct element which determines how instruction pages are presented,
and how the user navigates through them.

<instruct>
/ nextlabel = "Continue"
/ lastlabel = "Continue"
/ prevkey = (0)
/ inputdevice = mouse
/ windowsize = (90%, 90%)
/ screencolor = (0,0,0)
/ fontstyle = ("Arial", 3%)
/ txcolor = (255, 255, 255)
</instruct>

The inputdevice attribute speci!es that users can navigate through the instructions by clicking
the mouse. The nextlabel and lastlabel speci!es the text label for the navigation button that
advances to the next page, or that advances past the last page. By setting prevkey to "0", we
ensure that users can not navigate backwards through the pages. Finally, we've de!ned look and
feel of instruction pages using the screencolor, fontstyle, and windowsize commands.

3-Creating Trials

The IAT task requires that we create trial elements that present the stimuli representing the
target and attribute categories and gather classi!cation responses to those stimuli. There are six
types of trials used in this task depending on which category of stimulus is presented and which
response key is assigned as the correct classi!cation of the category.

First, let’s de!ne trials involving good words:

<trial attributeA>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = attributeA]
/ posttrialpause = 250
</trial>
The trial element’s name is attributeA, which is also the name of the text element containing the
good attribute words. The validresponse command indicates that participants may respond by
pressing the "E" or the "I" key on the keyboard. The "E" key is considered a correct response as
speci!ed by the correctresponsecommand. The posttrialpause attribute speci!es that after the
response, Inquisit inserts a 250 ms pause before advancing to the next trial.

The de!nition of the other trial elements are the similar to attributeA , differing only in the type
of stimulus presented and the response that’s considered correct.

Here's the de!nition of trials with bad words where "I" is a correct response:

<trial attributeB>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = attributeB]
/ posttrialpause = 250
</trial>

Next come trials with insect pictures classi!ed with the "E" key:

<trial targetBleft>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = targetB]
/ posttrialpause = 250
</trial>
Trials with insect pictures classi!ed with the "I" key:

<trial targetBright>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = targetB]
/ posttrialpause = 250
</trial>
Trials with "ower pictures classi!ed with the "E" key:

<trial targetAleft>
/ validresponse = ("E", "I")
/ correctresponse = ("E")
/ stimulusframes = [1 = targetA]
/ posttrialpause = 250
</trial>
Trials with "ower pictures classi!ed with the "I" key:

<trial targetAright>
/ validresponse = ("E", "I")
/ correctresponse = ("I")
/ stimulusframes = [1 = targetA]
/ posttrialpause = 250
</trial>
The trials above capture the different combinations of stimulus category and correct response in
the IAT. Our script will de!ne one additional trial used to present task instructions to participants.
This trial is de!ned as follows:

<trial instructions>
/ stimulustimes = [1=instructions, spacebar]
/ correctresponse = (" ")
/ errormessage = false
/ recorddata = false
</trial>

The stimulustimes attribute speci!es that the trial presents two text stimuli, one called
"instructions" which contains the IAT task instructions, and another called "spacebar" which
informs the participant they can press the spacebar to advance to the next trial. The
correctresponse attribute indicates that pressing the spacebar key is the only correct response,
and since the trial contains no validresponse de!nition, the spacebar is the only valid response as
well. No error feedback is presented on this trial. Since the trial does not gather any data of
interest, we've set recorddata to false so that the data for this trial (e.g., response, latency, stimuli,
etc.) are not recorded to the data !le. This helps us keep our data !les concise and clean, and it
saves us the trouble of having to !lter out this data later.

4-Creating Blocks

Next we'll de!ne the different kinds of blocks of trials used in the IAT. Blocks represent sequences
of trials that can be in random or predetermined order. For this experiment, 11 block elements
will be de!ned, 7 for practice at the IAT task, 2 for IAT data collection, and 2 for presenting task
instructions.

First, let’s de!ne the practice block element for classi!cation of the attribute categories, good
and bad.

<block attributepractice>
/ bgstim = (attributeAleft, attributeBright)
/ trials = [1=instructions;2-21 = noreplace(attributeA, attributeB)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>
This block element is named "attributepractice". The trials attribute speci!es that the block runs 1
instruction trial followed by 20 trials randomly selected without replacement from the two trial
types "attributeA" and "attributeB", which present good and bad words respectively. The
selection algorithm guarantees that both trial types will be run 10 time each. The bgstim
attribute speci!es that the "attributeA" and "attributeB" category labels are presented on the
screen as background stimuli to remind participants how the response keys map to the
categories. The errormessage attribute presents the stimulus named "error" (our big red X) for
200 ms whenever subjects respond incorrectly. The responsemode for the block is set to correct,
which means participants must give the correct response to advance to the next trial, even if
their initial resposne was incorrect. Finally, recorddata is set to false so that our data !le isn't
cluttered up with practice data from this block.

The rest of the blocks have a similar pattern. Next, lets de!ne the practice blocks used for target
categories. There are two such blocks for the two possible key assignments. Here is the practice
block on which insects are classi!ed with the right key and "owers with the left:

<block targetcompatiblepractice>
/ bgstim = (targetAleft, targetBright)
/ trials = [1=instructions;2-21 = noreplace(targetAleft, targetBright)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>
Now, lets de!ne a practice block on which insects are classi!ed with the left key and "owers with
the right:

<block targetincompatiblepractice>
/ bgstim = (targetAright, targetBleft)
/ trials = [1=instructions;2-21 = noreplace(targetAright, targetBleft)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>
Next, lets de!ne the practice blocks used after the key assignments for the target categories are
switched. First, we'll de!ne the block on which insects are classi!ed with the left key and "owers
with the right:

<block targetincompatiblepracticeswitch>
/ bgstim = (targetAleft, targetBright)
/ trials = [1=instructions;2-41 = noreplace(targetAleft, targetBright)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>
Next we'll de!ne the opposite key assignments:

<block targetincompatiblepracticeswitch>
/ bgstim = (targetAright, targetBleft)
/ trials = [1=instructions;2-41 = noreplace(targetAright, targetBleft)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>

Notice that there are 40 practice trials in these blocks rather than 20. The extra trials are included
to help subjects unlearn the key assignments from the previous blocks.

We've de!ned two blocks for the initial key assignment, and two more blocks or the key
assignment after the switch. Since each subject can only have one initial assignment and one
switched assignment, each subject will only encounter one of them depending on which key
assignment condition they are assigned to.

The practice blocks above handle single category judgements, so we still need to de!ne the
practice for the mixed judgment blocks in which participants have to classify both attribute and
target stimuli:

<block compatiblepractice>
/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright, orright, attributeBrightmixed)
/ trials = [1=instructions;
 3,5,7,9,11,13,15,17,19,21= noreplace(targetAleft, targetBright);
 2,4,6,8,10,12,14,16,18,20 = noreplace(attributeA, attributeB)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>

<block incompatiblepractice>
/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright, orright, attributeBrightmixed)
/ trials = [1=instructions;
 3,5,7,9,11,13,15,17,19,21 = noreplace(targetBleft, targetAright);
 2,4,6,8,10,12,14,16,18,20 = noreplace(attributeA, attributeB)]
/ errormessage = true(error,200)
/ responsemode = correct
/ recorddata = false
</block>
These are similar to previous practice blocks. One notable difference is that the bgstim attribute
presents both target and attribute labels. Another difference is how the sequence of trials are
de!ned. On odd numbered trials (excluding the instructions trial), the block runs a randomly
selected target classi!cation trial. On even numbered trials, a randomly selected attribute trial is
run. This ensures that the participant does not encounter a run of trials in which they are making
only "ower/insect judgments or only bad/good judgments.

That does it for practice blocks. Lets de!ne the test blocks. There are two such blocks, one using
a "compatible" (i.e., stereotype consistent) pairing of target and attribute categories, and the
other using the incompatible pairing:

<block compatibletest>
/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright, orright, attributeBrightmixed)
/ trials = [
 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40 = noreplace(targetAleft, targetBright);
 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39 = noreplace(attributeA, attributeB)]
/ errormessage = true(error,200)
/ responsemode = correct
</block>

<block incompatibletest>
/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright, orright, attributeBrightmixed)
/ trials = [
 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40 = noreplace(targetBleft, targetAright);
 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39 = noreplace(attributeA, attributeB)]
/ errormessage = true(error,200)
/ responsemode = correct
</block>
These blocks differ from the practice blocks in that they run 40 trials rather than 20, they do not
have recorddata set to false, and they include no instruction trials. Instructions are instead
displayed in a special instructions block. The reason for presenting the instruction trial in a
separate block is because our summary page that we created earlier reports the average
response latency score for the entire test block. If the test block included an instruction trial, the
latency on this trial would also be included in the average. Since we want to report the average
latency for test trials only and not instruction trials, we pulled the instruction trial out of the test
block and put it into its own instruction block. The instruction blocks are de!ned below:

<block compatibletestinstructions>
/ bgstim = (targetAleft, orleft, attributeAleftmixed, targetBright, orright, attributeBrightmixed)
/ trials = [1=instructions]
/ recorddata = false
</block>

<block incompatibletestinstructions>
/ bgstim = (targetBleft, orleft, attributeAleftmixed, targetAright, orright, attributeBrightmixed)
/ trials = [1=instructions]
/ recorddata = false
</block>
That concludes our block de!nitions.

5-Creating an Expt

The expt element de!nes the sequence in which blocks are run. For our picture IAT, the expt
element is de!ned as follows:

<expt>
/ blocks = [1=attributepractice; 2=block2; 3=block3; 4=block4; 5=block5; 6=block6; 7=block7;
8=block8; 9=block9]
/ postinstructions = (summary)
</expt>
The expt element is pretty simple. The blocks attribute speci!es a sequence of 9 blocks. The !rst
block is "attributepractice" block in which subjects practice classifying the good and bad word
stimuli. Blocks 2 through 9 are set to between-subject variables named "block2", "block3",
"block4", "block5", etc. When the script is run, these variables will be set to the names of real
blocks depending on the subject number that is assigned. By using between-subject variables,
the script counterbalances the order in which the test blocks are run across subjects so that half
our subjects run the compatible pairing !rst, and the other half runs the incompatible pairing.

The between-subject variables are de!ned as follows:

<variables>
/ group = (1 of 2) (block2=targetcompatiblepractice; block3=compatiblepractice;
block4=compatibletestinstructions; block5=compatibletest; block6=targetincompatiblepractice;
block7=incompatiblepractice; block8=incompatibletestinstructions; block9=incompatibletest]
/ group = (2 of 2) (block2=targetincompatiblepractice; block3=incompatiblepractice;
b l o c k 4 = i n c o m p a t i b l e t e s t i n s t r u c t i o n s ; b l o c k 5 = i n c o m p a t i b l e t e s t ;
b l o c k 6 = t a r g e t c o m p a t i b l e p r a c t i c e ; b l o c k 7 = c o m p a t i b l e p r a c t i c e ;
block8=compatibletestinstructions; block9=compatibletest]
</variables>
The variables element de!nes between-subject variables based on the subject number that was
entered when the experiment is run. The !rst group attribute speci!es the variable values for
odd numbered subjects (i.e., the !rst of every two subjects). For odd-numbered subjects, block2
is targetcompatiblepractice, block3 is compatiblepractice, block4 is compatibletestinstructions,
and so on. Thus, odd numbered subjects perform classi!cations with the compatible pairing !rst.
For even-numbered subjects, the incompatible pairing comes !rst.

By default, Inquisit will save a lot of data to the data !le, much of which isn't relevant to the IAT.
Although there's not much harm in having this data around, we can save ourselves some time
and disk space by telling Inquisit to save just the data we care about. We do this in the data
element as follows:

<data>
/ columns = (date time subject blockcode blocknum trialcode trialnum response correct latency
stimulusnumber1 stimulusitem1 stimulusnumber2 stimulusitem2)
</data>
The columns attribute lists the data columns to save. All other data columns will not be saved.

Finally, we'll specify some default settings that apply to this script using the defaults element.

<defaults>
/ screencolor = (0,0,0)
/ txbgcolor = (0,0,0)
/ txcolor = (255, 255, 255)
/ fontstyle = ("Arial", 5%)
</defaults>
The screencolor attribute sets the color of the screen throughout the experiment to black. The
txcolor and txbgcolor attributes specify the foreground and background colors for text stimuli as
white text on a black background. The fontstyle attribute speci!es that all text elements should
be presented in Arial font at 5% of the screen height unless otherwise speci!ed.

Our Picture IAT is now complete. You can run the experiment by selecting the "Run" command
on the "Experiment" menu.

Tutorial: Simple Implicit Attitude Task

This tutorial builds a simpli!ed Implicit Attitude Task (IAT). A number of standard IAT procedures
have been been omitted for the sake of illustrating basic Inquisit programming concepts. The
script produced by this tutorial is provided for instructional purposes only and should not be used for
research. To learn how to create a standard IAT, please see the Standard IAT Tutorial or the Picture
IAT Tutorial.

On the following pages, Inquisit commands are printed in blue, and comments are printed in
black:

Steps

1. Creating Text Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

1-Creating Text Stimuli

The !rst step in building an experiment is to de!ne all of the stimuli. Stimuli include text or
pictures to be shown on a given trial, background text that remains on the screen throughout a
block of trials, or a feedback text shown to the subject to indicate when to respond and whether
their response was correct or incorrect.

First, let’s de!ne the pleasant words:

<text pleasant>
/ items = pleasant
</text>
This text element de!nes a set of text stimuli named "pleasant" that has one attribute, items . The
items attribute indicates where the text items are de!ned. In this case, they are de!ned in an
item element named "pleasant" somewhere else in the script (more on this below). There are a
number of other attributes that could be speci!ed for our text stimulus, including attributes for
controling the color, background color, screen position, and font. However, we'll just use the
defaults of black text on a white background presented in the middle of the screen.

http://www.millisecond.com/support/docs/v3/html/tutorials/IAT/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/IAT/iattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/pictureiat/pictureiattutorial.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingexpt.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/simpleiat/iatcreatingexpt.htm

Now, lets de!ne the items for this text element:

<item pleasant>
/ 1 = " HONOR "
/ 2 = " LUCKY "
/ 3 = " DIAMOND "
/ 4 = " LOYAL "
/ 5 = " FREEDOM "
/ 6 = " RAINBOW "
/ 7 = " LOVE "
/ 8 = ” HONEST "
/ 9 = " PEACE "
/10 = " HEAVEN "
</item>
This item element is named "pleasant", which matches the name speci!ed in the items attribute
of the text element above. The item set consists of ten pleasant words. Note that the words are
padded with spaces so that they are all of equal length when presented in a !xed width font.

Now, lets de!ne the rest of the stimulus categories. First, we'll de!ne the unpleasant words:

<text unpleasant>
/ items = unpleasant
</text>
and the unpleasant items.

<item unpleasant>
/ 1 = " EVIL "
/ 2 = " CANCER "
/ 3 = " SICKNESS "
/ 4 = " DISASTER "
/ 5 = " POVERTY "
/ 6 = " VOMIT "
/ 7 = " BOMB "
/ 8 = " ROTTEN "
/ 9 = " ABUSE "
/10 = " MURDER "
</item>

Next, we'll de!ne the "owers:

<text "ower>
/ items = "owers
</text>
and the "ower items.
<item "owers>
/ 1 = " ROSE "
/ 2 = " BEGONIA "
/ 3 = " VIOLET "
/ 4 = " DAISY "
/ 5 = " GERANIUM "
/ 6 = " TULIP "
/ 7 = " CARNATION "
/ 8 = " DAFFODIL "
/ 9 = " LILAC "
/ 10= " PANSY "
</item>
Finally, we'll de!ne the insects:

<text insect>
/ items = insects
</text>
and insect items.
<item insects>
/ 1 = " ANT "
/ 2 = " LOCUST "
/ 3 = " BEE "
/ 4 = " HORNET "
/ 5 = " WASP "
/ 6 = " SPIDER "
/ 7 = " CENTIPEDE "
/ 8 = " COCKROACH "
/ 9 = " BEDBUG "
/ 10= " LADYBUG "
</item>
When creating an IAT, it's a good idea to include instruction text that reminds participants how
to respond to the various stimulus categories. We can do this by presenting text on the screen
that are shown in the background throughout a block of trials. So, let's create the instruction text
stimuli that remind the subject to press the "a’ key for unpleasant and the "5’ key for pleasant.

<text pleasantreminder>
/ items = ("Press 'a' for pleasant")
/ position = (75, 25)
/ txcolor = (0, 0, 255)
</text>
The reminder stimulus is a bit different than the previous stimuli. First, rather than de!ning the
items in a separate element, we've simply listed the single item directly in the attribute. This
inline syntax is a convenient way to de!ne small item sets for things like instrutions, focus
stimuli, and masks. Also, the position attribute speci!es that the text should be displayed on the
upper right of the screen rather than in the default center position. Speci!cally, the stimulus is
positioned 75% of way across the screen (from left to right), and 25% percent of the way down
the screen (from top to bottom). Finally,the txcolor attribute speci!es that the text should be
blue rather than the default color black. Colors in Inquisit are speci!ed as a mix of red, green, and
blue components; the txcolor attribute speci!es 0 intensity for red and green components, and
the maximum intensity 255 for the blue component, producing a nice blue color.

Now, lets de!ne the unpleasant reminder, which will be displayed in the upper left quadrant of
the screen.

<text unpleasantreminder>
/ items = ("Press '5' for unpleasant")
/ position = (25, 25)
/ txcolor = (0, 0, 255)
</text>
and the rest of the reminders:

<text "owerleft>
/ items = ("Press 'a' for "owers")
/ position = (25, 25)
/ txcolor = (0, 0, 255)
</text>
<text "owerright>
/ items = ("Press '5' for "owers")
/ position = (75, 25)
/ txcolor = (0, 0, 255)
</text>
<text insectleft>
/ items = ("Press 'a' for insects")
/ position = (25, 25)
/ txcolor = (0, 0, 255)
</text>

<text insectright>
/ items = ("Press '5' for insects")
/ position = (75, 25)
/ txcolor = (0, 0, 255)
</text>
<text pleasant_"ower>
/ items = ("Press '5' for pleasant or "owers")
/ position = (75, 25)
/ txcolor = (0, 0, 255)
</text>
<text pleasant_insect>
/ items = ("Press '5' for pleasant or insects")
/ position = (75, 25)
/ txcolor = (0, 0, 255)
</text>
<text unpleasant_"ower>
/ items = ("Press 'a' for unpleasant or "ower")
/ position = (25, 25)
/ txcolor = (0, 0, 255)
</text>
<text unpleasant_insect>
/ items = ("Press 'a' for unpleasant or insect")
/ position = (25, 25)
/ txcolor = (0, 0, 255)
</text>
Finally, lets de!ne an error message stimulus to show subjects whenever they incorrectly classify
a target stimulus:

<text errormessage>
/ items = (" ERROR ")
/ txcolor = (255, 0, 0)
</text>
The "errormessage" text element uses the txcolor attribute to set the red component to 255 and
the green and blue components to 0, producing a rich red color.

2-Creating Instructions

Now lets de!ne a set of instruction pages that inform the subject how to perform the task.
De!ning the instruction pages is easy using the page element. First, we'll de!ne a simple
welcome page.

 <page intro>
 ^^^^^^^ Implicit Association Test
 ^^Welcome and thank you for participating.
</page>
Note that the "^" character is used to force a line break. Otherwise, lines of text are word-
wrapped. Now we'll de!ne the rest of the instruction pages:

<page up>
The tasks that you will be doing in this experiment involve CATEGORY JUDGMENT. On each trial,
a stimulus will be displayed, and you must assign it to one of two categories. You should respond
AS RAPIDLY AS POSSIBLE in categorizing each stimulus, but don't respond so fast that you make
many errors. (Occasional errors are okay.)^^
The two categories that you are to distinguish are:^^
UNPLEASANT vs. PLEASANT words.^^
Press the "a’ key if the stimulus is an UNPLEASANT word.^^
But press "5' key if the stimulus is a PLEASANT word.^^
</page>

<page if>
The two categories that you are to distinguish are:^^
INSECTS vs. FLOWERS.^^
Press the "a’ key if the stimulus is an INSECT.^^
But press "5' key if the stimulus is a FLOWER.^^
</page>

<page !>
The two categories that you are to distinguish are:^^
FLOWERS vs. INSECTS.^^
Press the "a’ key if the stimulus is a FLOWER.^^
But press "5' key if the stimulus is an INSECT.^^
</page>

<page compatible>
The four categories that you are to distinguish are:^^
UNPLEASANT vs. PLEASANT words^
or^
INSECTS vs. FLOWERS.^^
Press the "a’ key if the stimulus is^
an UNPLEASANT word or an INSECT.^^
But press "5' key if the stimulus is^
a PLEASANT word or a FLOWER.^^
</page>

<page incompatible>
The four categories that you are to distinguish are:^^
UNPLEASANT vs. PLEASANT words^
or^
FLOWERS vs. INSECTS.^^
Press the "a’ key if the stimulus is^
an UNPLEASANT word or a FLOWER.^^
But press "5' key if the stimulus is^
a PLEASANT word or an INSECT.^^
</page>

<page end>
The Implicit Association Test is now concluded.
If you have any questions or reactions to the
experiment, please discuss them with the experimenter.
</page>
Finally, we'll specify how participants can navigate through the instruction pages using the
instruct element. A script should have only one such element.

<instruct>
/ nextkey = ("5")
/ prevkey = ("a")
</instruct>
The nextkey attribute indicates that participants must press the "5" key to advance to the next
page, and the prevkey attribute speci!es pressing the "a" key goes back to the previous key.

3-Creating Trials

The next step is to de!ne the different kinds of trials that will be used in the IAT task. Trial
elements control which stimuli are presented and how the subject may respond to those stimuli.
There are six types of trials used in this task depending on which semantic category of stimulus
is presented and which response key is assigned as the correct classi!cation of the category.

First, let’s de!ne trials involving pleasant words, which are always assigned to the right response
key.

<trial pleasant>
/ stimulusframes = [1=pleasant]
/ validresponse = ("a", "5")
/ correctresponse = ("5")
</trial>
The trial element’s name is pleasant . On each line of data in the data !le corresponding to this
type of trial, this trial name is written.

The stimulusframes attribute de!nes the stimulus presentation sequence of the trial. The entire
presentation sequence will consist of as many frames as are speci!ed in the frames attribute
(only 1 in this case). A pleasant word is presented on the !rst frame, after which Inquisit begins
waiting for (and timing) the subject’s response.

The validresponse attribute indicates that the subject may respond by pressing either the "a’ or
the "5’ key, after which Inquisit will advance to the next trial. The correctresponse attribute
indicates that only the "5’ key is considered a correct response on this type of trial.

The de!nition of the other trial elements are the similar to pleasant , differing only in the type of
stimulus presented and the response that’s considered correct.

Here's the de!nition of trials with unpleasant words where "a" is a correct response:

<trial unpleasant>
/ validresponse = ("a", "5")
/ correctresponse = ("a")
/ stimulusframes = [1=unpleasant]
</trial>

Next come trials with insect names classi!ed with the "5" key:

<trial insright>
/ validresponse = ("a", "5")
/ correctresponse = ("5")
/ stimulusframes = [1=insect]
</trial>
Trials with insect names classi!ed with the "a" key:

<trial insleft>
/ validresponse = ("a", "5")
/ correctresponse = ("a")
/ stimulusframes = [1=insect]
</trial>
Trials with "ower names classi!ed with the "5" key:

<trial "owright>
/ validresponse = ("a", "5")
/ correctresponse = ("5")
/ stimulusframes = [1="ower]
</trial>
Trials with "ower names classi!ed with the "a" key:

<trial "owleft>
/ validresponse = ("a", "5")
/ correctresponse = ("a")
/ stimulusframes = [1="ower]
</trial>
The trials above capture the different combinations of stimulus category and correct response in
the IAT.

4-Creating Blocks

The next step is to de!ne the different kinds of blocks that will be used in the experiment. Blocks
represent sequences of trials that can be in random or !xed order. For this experiment, 5 block
elements will be de!ned, 3 for practice trials and 2 for data collection.

First, let’s de!ne the practice block element for classi!cation of pleasant and unpleasant words.

<block up_practice>
/ trials = [1-20 = noreplace(pleasant, unpleasant)]
/ bgstim = (pleasantreminder, unpleasantreminder)
/ preinstructions = (up)
/ errormessage = (errormessage, 200)
/ blockfeedback = (latency, correct)
</block>
This block element is named "up_practice". The trials attribute speci!es that the block runs 20
trials randomly selected without replacement from the two trial types "pleasant" and
"unpleasant". The selection algorithm guarantees that both trial types will be run an equal
number of times (10 time each). The bgstim attribute speci!es that the "pleasantreminder" and
"unpleasantreminder" instruction text stimuli are presented on the screen as background
stimuli. The preinstructions attribute displays 3 pages of instructions ("intro1", "intro2", and
"intro3") before running the trials. The errormessage attribute presents the "errormessage"
stimulus for 200 ms whenever subjects respond incorrectly. Finally, the blockfeedback attribute
speci!es that after the block is over, subjects will be shown their mean latency and percent
correct for the block.

The rest of the blocks have a similar pattern. Next, lets de!ne a practice block on which insects
are classi!ed with the left key and "owers with the right:

<block if_practice>
/ trials = [1-20 = noreplace(insleft, "owright)]
/ bgstim = (insectleft, "owerright)
/ preinstructions = (if)
/ errormessage = (errormessage, 200)
/ blockfeedback = (latency, correct)
</block>
Now, lets de!ne a practice block on which insects are classi!ed with the right key and "owers
with the left:

<block !_practice>
/ trials = [1-20 = noreplace(insright, "owleft)]
/ bgstim = (insectright, "owerleft)
/ preinstructions = (!)
/ errormessage = (errormessage, 200)
/ blockfeedback = (latency, correct)
</block>
Next, lets de!ne the "compatible" test block. Note that on test blocks we no longer dispay an
error message for incorrect responses:

<block compatible>
/ trials = [1-40 = noreplace(insleft, "owright, pleasant, unpleasant)]
/ bgstim = (unpleasant_insect, pleasant_"ower)
/ preinstructions = (compatible)
/ blockfeedback = (latency, correct)
</block>
Finally, lets de!ne the "incompatible" block:

<block incompatible>
/ trials = [1-40 = noreplace(insright, "owleft, pleasant, unpleasant)]
/ bgstim = (pleasant_insect, unpleasant_"ower)
/ preinstructions = (incompatible)
/ blockfeedback = (latency, correct)
</block>

5-Creating an Expt

The next step is to de!ne an expt element that de!nes the "ow of blocks in the experiment. The
expt element is de!ned as follows:

<expt>
/ preinstructions = (intro)
/ postinstructions = (end)
/ blocks = [1=up_practice; 2=block2; 3=block3; 4=block4; 5=block5]
</expt>
The expt element is simple. The preinstructions attribute begings the expt by showing subjects a
page of instructions, "intro". The postinstructions attribute speci!es !nal instruction page named
"end" to be displayed at the conclusion of the experiment. The blocks attribute speci!es a total of
5 blocks. The !rst block is the "up_practice" block in which subjects practice classifying the
pleasant and unpleasant stimuli. Blocks 2 through 5 are set to between-subject variables named
"block2", "block3", "block4", and "block5", all of which are de!ned below. These between-subject
variables allow the experiment to counterbalance the order in which the test blocks are run
across subjects.

Next, we'll de!ne the between-subject variables used above:

<variables>
/ group = (1 of 2) (block2=!_practice, block3=incompatible, block4=if_practice,
block5=compatible)
/ group = (2 of 2) (block2=if_practice, block3=compatible, block4=!_practice,
block5=incompatible)
</variables>
The variables element de!nes between-subject variables based on the subject number that was
entered when the experiment is run. The !rst group attribute speci!es the variable values for
odd numbered subjects. For odd-numbered subjects, block2 is !_practice, block3 is incompatible,
block4 is if_practice, and block5 is compatible. For even-numbered subjects, block2 is if_practice,
block3 is compatible, block4 is !_practice, and block5 is incompatible.

With that, the script is essentially complete. However, we'll do a little !ne tuning by specifying
some default settings using the defaults element.

<defaults>
/ screencolor = (175, 175, 255)
/ fontstyle = ("Courier New", 14pt)
</defaults>
The screencolor attribute sets the color of the screen throughout the experiment to light blue.
The fontstyle attribute speci!es that all stimulus and instruction text should be displayed in a
14pt Courier New font. You can specify the font attribute using Inquisit's Font Wizard, avaiable
from the Tools menu. The wizard allows you to pick a font using the standard font dialog, and will
spit the corresponding attribute de!nition into your script.

The experiment is now complete! You can run the experiment by selecting the "Run" command
on the "Experiment" menu.

Tutorial: Subliminal Priming Task

This tutorial explains how to build a simple subliminal priming experiment such as that
described by Draine and Greenwald (Journal of Experimental Psychology: General, 1998). On
each trial, subjects are shown a subliminal (masked) prime word followed immediately by a
target word. Primes and targets are divided into two de!nitional categories: pleasant (e.g., love)
or unpleasant (e.g., death). Subjects are instructed to ignore the primes and classify the targets
as pleasant (by pressing the "5" key on the number pad) or unpleasant (by pressing the "a" key).
Each trial falls into one of four experimental conditions depending on the category (pleasant or
unpleasant) of prime and target presented:

-pleasant prime with pleasant target (congruent)

-pleasant prime with unpleasant target (incongruent)

-unpleasant prime with pleasant target (incongruent)

-unpleasant prime with unpleasant target (congruent)

Longer Reaction Times and/or higher error rates on trials in which the prime and target are
incongruent compared to the condition in which the prime and target are congruent, suggest the
presence of subliminal priming.

Steps

1.Creating Text Stimuli

2.Creating Instructions

3.Creating Trials

4.Creating Blocks

5.Creating an Experiment

http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingexpt.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/subliminal/subliminalcreatingexpt.htm

1-Creating Text Stimuli

The !rst step in building an experiment is to create the experimental stimuli and specify how
they should be presented. Stimuli will typically consist of text or pictures presented during a
trial, instruction text that remains on the screen throughout a block of trials, and feedback
messages that indicate when to respond and whether or not a response was correct.

First, let's create a text element that de!nes the pleasant prime words:

<text pleasantprime>
/ items = pleasant
</text>
The text element's name is "pleasantprime". The element could be named anything we wish, but
it's a good idea to picks a simple, descriptive name. It has a single attribute called "items" that
speci!es where the actual items are located. In this case, we have speci!ed that the items are
located in an item element called "pleasant" that we will create a bit later.

The text element allows us to de!ne other attributes including color and screen lcoation. In this
element, we will use the default values. (The default color is black, and the default position is the
center of the screen.) Later, we'll demonstrate how to change these values.

In the example above, we de!ned pleasant prime stimuli. Next, we'll de!ne pleasant target
stimuli:

<text pleasanttarget>
/ items = pleasant
</text>
With the exception of it's name, this text element is identical to the pleasantprime element. Note
that the items attribute is set to the same item list (that we'll create in a moment) named
"pleasant". This element will use those same items as targets.

Now, lets de!ne the items used by both the pleasantprime and pleasanttarget text elements:

<item pleasant>
/ 1 = " HONOR "
/ 2 = " LUCKY "
/ 3 = " DIAMOND "
/ 4 = " LOYAL "
/ 5 = " FREEDOM "
/ 6 = " RAINBOW "
/ 7 = " LOVE "

/ 8 = ” HONEST "
/ 9 = " PEACE "
/10 = " HEAVEN "
</item>
Pretty simple isn't it? Notice the opening and closing lines: <item pleasant> and </item> The
name of this element is pleasant. Notice that there are 8 spaces on either side of the items
(words). This is done to center the words in the presentation box during a given trial.

Now, lets de!ne the unpleasant primes and targets:

<text unpleasantprime>
/ items = unpleasant
</text>
<text unpleasanttarget>
/ items = unpleasant
</text>
These text elements similar to the previous ones, except that they use "unpleasant" items. Let's
create the unpleasant items:

<item unpleasant>
/ 1 = " EVIL "
/ 2 = " CANCER "
/ 3 = " SICKNESS "
/ 4 = " DISASTER "
/ 5 = " POVERTY "
/ 6 = " VOMIT "
/ 7 = " BOMB "
/ 8 = " ROTTEN "
/ 9 = " ABUSE "
/10 = " MURDER "
</item>
Let's review what we've covered so far.

1. Inquisit uses a set of instructions to control the "ow of an experiment called a script.
2. A script consists of elements.
3. Each element has its own name by which other elements can refer to it.
4. Elements have attributes that control speci!c properties of the element (e.g. font size and

color).
5. Some attributes of an element can refer to other elements in the script by name.

We aren't done with the stimuli yet. We still need to de!ne the forward and backward, the error
messages, and create background messages. Here is the text element that will serve as the
forward masks of the primes, called "forwardmask":

<text forwardmask>
/ items = (" KQHYTPDQFPBYL ", " PYLDQFBYTQKPH ")
</text>
This text element consists of two items, "KQHYTPDQFPBYL" and "PYLDQFBYTQKPH". Note that
the items in this case are de!ned directly inside the forwardmask text element. You can de!ne
items this way or by using an items element as was done previously. A good rule of thumb is to
use the items element for large item sets, or for item sets that will be shared by multiple text
elements (for example, the pleasant items were used by both pleasantprime and pleasanttarget).
For small item sets such as the two forward masks, or for items sets that are only used by one
text element, it is usually more convenient to de!ne such items directly inline.

Here is the text element that will de!ne the stimuli that will serve as backward masks of the
primes. Let's call it "backwardmask". The backward mask is very similar to the forward mask:

<text backwardmask>
/ items = (" PYLDQFBYTQKPH ", " KQHYTPDQFPBYL ")
/ select = current (forwardmask)
</text>
Note the addition of the select attribute set to the current option. By default, the select attribute
is set to noreplace and items are selected without replacement on each trial. The current setting
links the selection of the backwardmask item on each to that of the forwardmask item. Thus, for
trials on which both a forward and backward mask are presented, if the !rst forward mask item is
selected and presented on that trial, then the !rst backward mask item will also be presented. If
the second forward mask was selected and presented, then the second backward mask will also
be presented. Thus, each forward mask item has a complimentary backward mask item that
always appears in conjunction with it. By linking these two stimuli, the forward and backward
masks on a given trial will never be identical since the order of the two items is reversed.

Now, lets create stimuli (text) to be shown in the background throughout an entire block of
trials. These stimuli will serve as reminders to the subject to press the "a" key for unpleasant and
the "5" key for pleasant.

<text pleasantreminder>
/ items = ("5 = pleasant")
/ position = (75, 25)
</text>
This stimulus is similar to the previous stimuli, except the position attribute is no longer set to the
default (center). Inquisit speci!es screen position using a coordinates system ranging from 0 to
100 on both the horizontal and vertical axes. The upper left corner of the screen is (0, 0), and the
lower right corner of the screen is (100, 100). The center of the screen is (50, 50). So, the
coordinates of (75, 25) used above in pleasantreminder will place the stimuli above and to the
right of the center of the screen.

Now, let’s de!ne the unpleasant reminder, which will be displayed on the upper left region of
the screen.

<text unpleasantreminder>
/ items = ("a = unpleasant")
/ position = (25, 25)
</text>
Finally, lets de!ne a stimulus to show subjects whenever they incorrectly classify a target
stimulus:

<text errormessage>
/ items = (" ERROR ")
/ color = (255, 0, 0)
</text>
The errormessage text element uses the color attribute. The color attribute takes three integers
between 0 and 255 that de!ne the intensity of the red, green, blue components of the color
respectively. The red component is the maximum intensity, 255, whereas the green and blue
components are 0. This combination produces a rich red color.

2-Creating Instructions

Next, let's de!ne the instruction pages. First, we'll create an introduction page:

<page intro1>
The tasks that you will be doing in this experiment involve CATEGORY JUDGMENT.
On each trial, a stimulus will be displayed, and you must assign it to one of
two categories. You should respond AS RAPIDLY AS POSSIBLE in categorizing each stimulus,
but don't respond so fast that you make many errors. (Occasional errors are okay.)
^^
The two categories that you are to distinguish are:
^^
UNPLEASANT vs. PLEASANT words.
^^
Press the "a" key if the stimulus is an UNPLEASANT word.
^^
But press "5" key if the stimulus is a PLEASANT word.
^^
</page>

The page element doesn't have any attributes, but simply contains the content of the page. The
special character “^” will force a line break when the page is displayed on the screen. Otherwise,
the instructions are word wrapped inside the page area.

Now let's de!ne the rest of the pages in the script:

<page intro2>
Just before each word that you are to categorize you will see one or more words and letter
strings brie"y "ashed.^^
It is your task to IGNORE these brie"y "ashed stimuli. Respond only to the last, clearly visible
word shown on each trial.
</page>
<page intro3>
When you press the "5' key, you will see a stimulus to which you should respond.^^
As a reminder of the instructions for responding:^^
Press the "a" key if the stimulus is an UNPLEASANT word.^^
Press "5' key if the stimulus is a PLEASANT word.^^
</page>
<page ready>
When you press the "5" key, a new block of trials at the same task as the last block will start.^^
Be ready for the !rst stimulus when you press the key.
</page>
<page end>
The experiment is now concluded. If you have any questions or reactions to the experiment,
please discuss them with the experimenter.
</page>
Finally, we'll de!ne an instruct element that speci!es how subjects can navigate from page to
page. A script should have only one such element.

<instruct>
/ nextkey = ("5")
/ prevkey = (“a”)
</instruct>
The nextkey attribute speci!es that subjects can press the "5" key to advance to the next
instruction page, and "a" key to go back to a previous page.

3-Creating Trials

The next step is to de!ne the different kinds of trials that will be used in the experiment. The
types of trials you de!ne will correspond to the different conditions of the experiment. This
experiment has four conditions, one condition for each of the four possible combinations of
prime and target categories.

First, let’s de!ne trials involving pleasant primes and pleasant targets by creating the following
trial element.

<trial pp>
/ pretrialpause = 300
/ validresponse = ("a", "5")
/ correctresponse = ("5")
/ stimulusframes = [1=forwardmask; 10=pleasantprime; 13=backwardmask; 14=pleasanttarget]
/ posttrialpause = 100
</trial>
The trial element is called "pp", which is short for "pleasant pleasant" because the trial presents
both a pleasant prime and pleasant target.

The posttrialpause attribute tells Inquisit to pause 300 milliseconds before each trial is executed.

The validresponse attribute speci!es which keys a subject can press to register their response.
Remember we already talked about these responses when the instructions were created. When
the participant responds by pressing the "a" or the "5" key, Inquisit will advance to the next trial.

The correctresponse attribute tells Inquisit which responses are considered correct. In this trial,
"5" is correct.

the stimulusframes attribute is slightly more technical because it is closely connected to how CRT
and LCD monitors operate. Computer monitors repaint the screen from top to bottom according
to a !xed interval called a "frame" (a.k.a., vertical retrace interval). Most standard monitors
repaint the screen about every 10 to 17 milliseconds. To determine the frequency at which your
CRT monitor repaints the screen, select the “Check Hardware” command from Inquisit’s Tools
menu. Inquisit will run at any frequency. If you decide you would like to change the retrace
frequency of your video system, you should check the manufacturer's documentation for the
speci!cs on your monitor. Typically, the frame rate can be controlled from Display settings within
Windows.

Thus, the stimulus presentation sequence is de!ned in terms of discrete frames rather than
times. The entire presentation sequence consists of as many frames as are speci!ed in the frames
attribute (14 in this case).

So, a forwardmask is presented at the onset of the !rst frame of the trial. This forwardmask
remains on the screen until it is overwritten by a prime stimulus on the 10th frame. The prime
stimulus remains on the screen for 3 frames (50 ms on a 60 hz monitor), before it is overwritten
by a backward mask on the 13th frame. Finally, a target is presented on the 14th frame and
remains on the screen until the subject responds.

So you see, you have to do a little calculating here to decide the time each frame is to be
presented. 3 frames on a 60 hz monitor is the equivalent of 50 ms because:
3 (frames) x 16.7 (ms) = 50.1 (ms).

Finall, the posttrialpause atribute tells Inquisit to wait 100 ms after this trial before advancing to
the next trial.

Remember, this was just one type of trial. We need to de!ne 3 more trial types. The rest of the
trials will be very similar to the !rst. Many experiments change only minor details from trial to
trial; a word list, an order of presentation, response variables, etc. Once you have the !rst trial
coded, you are ready to make the rest. It's very easy to do that in Inquisit. You can copy and paste
your code for trial one and then just change the minor variables. Let's see what the other trial
codes look like.

<trial pu>
/ pretrialpause = 300
/ validresponse = ("a", "5")
/ correctresponse = ("a")
/ s t imulusf rames = [1=for wardmask ; 10=pleasantpr ime; 13=back wardmask ;
14=unpleasanttarget]
/ posttrialpause = 100
</trial>

<trial up>
/ pretrialpause = 300
/ validresponse = ("a", "5")
/ correctresponse = ("5")
/ stimulusframes = [1=for wardmask; 10=unpleasantprime; 13=backwardmask;
14=pleasanttarget]
/ posttrialpause = 100
</trial>
<trial uu>
/ pretrialpause = 300
/ validresponse = ("a", "5")

/ correctresponse = ("a")
/ stimulusframes = [1=for wardmask; 10=unpleasantprime; 13=backwardmask;
14=unpleasanttarget]
/ posttrialpause = 100
</trial>
The three trials above differ from the original only by which stimuli they present and which
response is considered correct. Together, the four trials capture the four combinations of
pleasant and unpleasant prime and target stimuli.

4-Creating Blocks

The next step is to de!ne the different kinds of blocks that will be used in the experiment. For
this experiment, two block elements will be de!ned, one for practice trials and the other for data
collection.

First, let’s de!ne the practice block element.

<block practice>
/ bgstim = (pleasantreminder, unpleasantreminder)
/ preinstructions = (intro1, intro2, intro3)
/ trials = [1-40 = noreplace(pp, pu, up, uu)]
/ errormessage = (errormessage, 200)
/ blockfeedback = (latency, correct)
</block>
The block is called "practice".

The bgstim attribute tells Inquisit to keep the pleasantreminder and unpleasantreminder on the
screen during the block. Remember these stimulus elements were de!ned previously, we
wanted to keep "a=unpleasant" and "5=pleasant" on the screen during the trials in the upper left
and right quadrants respectively.

The preinstructions attribute refers lists some of the instructions pages created in the previous
section. This command tells Inquisit to display the pages named intro1, intro2, and intro3 at the
beginning of the block.

The trials attribute de!nes trials (40) for this practice block that are randomly without
replacement selected from the four trial types: pp, pu, up, uu. This guarantees that each trial type
will be presented 10 times.

The errormessage attribute indicates that when the participant responds incorrectly in this
practice block, the errormessage text stimulus (previously de!ned) will be displayed for 200 ms.

Giving feedback during a practice trial is a good idea because you generally want the participant
to learn the right way to perform their task. As you'll see, we remove this feedback in the data
collection blocks.

The blockfeedback attribute speci!es that after the block is over, subjects will be shown their
mean latency and percent correct.

Now, lets de!ne a data collection block.

<block data>
/ screencolor = (175, 175, 255)
/ bgstim = (pleasantreminder, unpleasantreminder)
/ preinstructions = (ready)
/ trials = [1-40 = random(pp, pu, up, uu)]
/ blockfeedback = (latency, correct)
</block>
This element is just like the practice element except that the participant is no longer given the
feedback because we removed the errormessage attribute. Also, the block begins with a different
instruction page called "ready".

5-Creating an Expt

Next, we'll need to de!ne an expt element that speci!es which blocks to run.

<expt>
/ blocks = [1 = practice; 2-5 = data]
/ postinstructions = (end)
</expt>
The expt element runs a total of 5 blocks. The !rst block is "practice", and the next for blocks are
"data'. After all the blocks have been run, a single page of instructions called end is displayed.

Finally, we'll want to set the default font and screen color for the experiment using the defaults
element:

<defaults>
/ fontstyle = ("Courier New", 14pt)
/ screencolor = (150, 150, 150)
</defaults>
The fontstyle attribute sets the default font for all text stimuli and instruction pages to 14pt
Courier New. You can use Inquisit's Font Wizard to generate the font selection for you.

To use the Font Wizard, place your cursor at the location in the script where you wish the font
attribute to appear, then select the Font Wizard command from the Tools menu. A standard font
dialog will appear, allowing you to select the font of your choice. The wizard will then inject the
corresponding attribute de!nition into you script.

The screencolor attribute works just like the txcolor attribute we con!gured earlier. In this case,
the red, green, and blue components are all set to 150, making the screen grey.

The experiment is complete!

Tutorial: Covert Attention Task

This tutorial builds a covert attention task. The task measures the effect of an unattended cue on
spatial position judgments. Subjects perform the task by indicating whether a critical stimulus is
presented on the left or right side of the screen by pressing the 'a' or 's' key on the keyboard
respectively. Subjects are instructed to !xate their gaze on the center of the screen while
performing the task, where an arrow is presented on each trial. On 80% of the trials, the arrow
points in the direction where the critical stimulus is presented (compatible). On the remaining
20% of the trials, the arrow points in the opposite direction (incompatible). Covert attention to
the arrow is measured by comparing the average response latency of the compatible and
incompatible trials. Shorter mean latencies on compatible as compared to incompatible trials
indicates that subjects are in"uenced by the unattended arrow stimulus.

Steps

1. Creating Text Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

1-Creating Text and Picture Stimuli

The !rst step in building an experiment is to de!ne all of the stimuli. Stimuli include text or
pictures to be shown on a given trial, background text that remains on the screen throughout a
block of trials, or a feedback text shown to the subject to indicate when to respond and whether
their response was correct or incorrect.

Inquisit allows you to specify global default settings for stimuli and other parts of the
experiment using the <defaults> element. For this script, we will set the default font for all text
stimuli that we present, and we'll also set the background color for the screen to black.

<defaults>
/ screencolor = (0, 0, 0)
/ fontstyle = ("Arial", 20pt)
</defaults>
Now, let’s create the arrow stimuli to be presented at the !xation point in the center of the
screen:

http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingexpt.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/cacreatingexpt.htm

<picture leftarrow>
/ items = ("http://www.millisecond.com/samples/covertattention/leftarrow.jpg")
</picture>

<picture rightarrow>
/ items = ("http://www.millisecond.com/samples/covertattention/rightarrow.jpg")
</picture>
That was pretty easy. We simply created two picture stimuli called "leftarrow" and "rightarrow".
Both stimuli consist of a single item picture item contained in the picture !les "rightarrow.jpg"
and "lefttarrow.jpg" respectively. In this case, the !les are downloaded from http://
www.millisecond.com/samples/covertattention, but typically you would keep the !les in the
same folder as the script. By default, Inquisit presents the pictures in the center of the screen.

Now, let's de!ne a text stimulus to serve as the !xation point itself.

<text !xation>
/ items = ("+")
/ color = (255, 255, 255)
/ txbgcolor = (0,0,0)
/ fontstyle = ("Arial", 30pt)
/ erase = false
</text>
The text is called "!xation" and it consists of a single item, "+". The foreground color is white, with
the red, green, and blue values set to the maximum value of 255. You can use Inquisit's Color
Wizard available on the Tools menu to get the red, green, and blue values for any color. The
background color is black, with red, green, and blue values set to the minimum value of 0. The
font is Arial. You can select a font using Inquisit's Font Wizard, also available on the Tools menu.
Finally, the erase command indicates that the !xation point should not be erased.

Now, let's de!ne text stimuli to be presented just below the !xation point that will serve as
instruction reminders.

<text instructleft>
/ items = ("Press A if the brightened box is on the left.")
/ position = (50, 60)
/ color = (255, 255, 255)
/ txbgcolor = (0,0,0)
</text>

http://www.millisecond.com/samples/covertattention/leftarrow.jpg
http://www.millisecond.com/samples/covertattention/leftarrow.jpg
http://www.millisecond.com/samples/covertattention/rightarrow.jpg
http://www.millisecond.com/samples/covertattention/rightarrow.jpg
http://www.millisecond.com/samples/covertattention
http://www.millisecond.com/samples/covertattention
http://www.millisecond.com/samples/covertattention
http://www.millisecond.com/samples/covertattention

<text instructright>
/ items = ("Press S if the brightened box is on the right.")
/ position = (50, 65)
/ color = (255, 255, 255)
/ txbgcolor = (0,0,0)
</text>
The instruction stimuli use the position command to present the stimuli just below the !xation
point. Position is speci!ed in terms of x and y coordinates. The unit of measurement is
percentage, with 0 = top/left, 50 = center, and 100 = bottom right. The instruction reminders are
presented horizontally centered and vertically 10 percentage points below center.

Now, let's de!ne the target pictures. We will create four target stimuli, each of which presents a
picture of a light yellow rectangle in one of the four corners of the screen.

<picture toplefttarget>
/ items = ("http://www.millisecond.com/samples/covertattention/targetrectangle.jpg")
/ position = (0, 0)
/ valign = top
/ halign = left
</picture>

<picture bottomlefttarget>
/ items = ("http://www.millisecond.com/samples/covertattention/targetrectangle.jpg")
/ position = (0, 100)
/ valign = bottom
/ halign = left
</picture>

<picture toprighttarget>
/ items = ("http://www.millisecond.com/samples/covertattention/targetrectangle.jpg")
/ position = (100, 0)
/ valign = top
/ halign = right
</picture>

<picture bottomrighttarget>
/ items = ("http://www.millisecond.com/samples/covertattention/targetrectangle.jpg")
/ position = (100, 100)
/ valign = bottom
/ halign = right
</picture>

http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg
http://www.millisecond.com/samples/covertattention/targetrectangle.jpg

Finally, we'll create the distractor stimuli. There are four distractors, each of which presents a dark
yellow rectangle in the four corners of the screen.

<picture topleft>
/ items = ("http://www.millisecond.com/samples/covertattention/rectangle.jpg")
/ position = (0, 0)
/ valign = top
/ halign = left
</picture>

<picture bottomleft>
/ items = ("http://www.millisecond.com/samples/covertattention/rectangle.jpg")
/ position = (0, 100)
/ valign = bottom
/ halign = left
</picture>

<picture topright>
/ items = ("http://www.millisecond.com/samples/covertattention/rectangle.jpg")
/ position = (100, 0)
/ valign = top
/ halign = right
</picture>

<picture bottomright>
/ items = ("http://www.millisecond.com/samples/covertattention/rectangle.jpg")
/ position = (100, 100)
/ valign = bottom
/ halign = right
</picture>
Those are all the stimuli that we'll present in this script. Next, we'll create the instructions.

2-Creating Instructions

Now lets de!ne how we will present instructions to subjects using the <instruct> element. A
script should have only one such element.

<instruct>
/ fontstyle = ("Arial", 18pt, true)
/ nextlabel = "Press the spacebar to continue"
/ lastlabel = "Press the spacebar to continue"

http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg
http://www.millisecond.com/samples/covertattention/rectangle.jpg

/ nextkey = (" ")
</instruct>
We've set the font to 18pt Arial bold. We've also de!ned the labels that will appear on the
buttons that allow subjects to proceed forward through our instruction pages. Finally, we've
speci!ed the spacebar key (represented by the space character, " ") as the key to press to
advance.

Once we've de!ned how instruction pages will be presented, we have to create the pages
themselves. This part is pretty easy. Note that the "^" character forces a line break. Otherwise,
lines of text are word-wrapped.

<page inquisit>
^^The following sample illustrates how to create a covert attention task using Inquisit.
</page>

<page intro1>
^Four boxes will be presented in each corner of the screen, and a !xation point will appear in the
center of the screen. Keep your eyes focused on the !xation point throughout the entire
experiment.
^^On each trial, the !xation point will change to an arrow pointing left or right. On 80% of the
trials, the arrow points to the side of the screen on which one of the boxes will brighten. On the
remaining 20% of the trials, the arrow points in the opposite direction.
</page>

<page intro2>
^Your task is to focus on the !xation point in the center of the screen and indicate whether a box
brightened on the left or right side of the screen. If a box on the left brightens, hit the "A" key. If a
box on the right brightens, hit the "S" key.
^^Remember: the arrow will usually point in the direction of the screen with the brighter box, so
it is to your advantage to focus on the center !xation point.
^^Press the space bar to begin practicing the task.
</page>

<page begin>
^^Practice is now complete. Press the space bar to begin the task.
</page>

<page !nish>
^^Thank you for participating. The demo is now !nished.
</page>
Last, we'll de!ne a special instruction page that we'll use to report performance feedback to our
subjects.

<page performance>
^Performance Summary:
^^You gave the correct answer on <% block.covertattention.percentcorrect %> percent of the
trials.
^^Your average response time was <% block.covertattention.meanlatency %> milliseconds.
</page>
Note the commands "<% block.cover tattention.percentcorrect %>" and "<%
block.covertattention.meanlatency %>" that appear in the page. These commands will be
replaced by the percent correct and mean response latency for all trials in the block called
"coverattention", which we will de!ne a little bit later. Inquisit allows you to present a variety of
accuracy and latency data to the subject in this way. See help on the page element for more
information.

3-Creating Trials

Now it's time to de!ne the trials for the covert attention task. The trial element speci!es which
stimuli should be presented, when they are presented, and how the subject should respond. The
trial element brings all of the pieces together into a task.

First, we'll de!ne a set of practice trials for the spatial judgment task. The practice trials present
our instructions text stimuli that remind the subject how to perform the task.

<trial topleftpractice>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=toplefttarget, bottomleft, topright,
bottomright; 1000=instructleft, instructright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>
The "stimulustime" command de!nes the sequence of stimuli to be presented. The trials
presents the !xation point at the beginning of the trial, followed 500 milliseconds later by the
left arrow picture. After another 200 milliseconds, the trial presents the target stimulus in the
topleft corner and distractor stimuli in other corners. Finally, 300 milliseconds later, the
instruction text is presented.

On this trial, the subject can respond by pressing either the "s" or "a" key as de!ned by the
validresponse command. A response of "s" is considered correct as de!ned by the
correctresponse command.

http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/..%5Clanguage%5Celements%5Cpage.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/covert_attention/..%5Clanguage%5Celements%5Cpage.htm

Finally, the responsetime command indicates that Inquisit should start measuring the subject's
response 700 milliseconds into the stimulus sequence. This corresponds exactly to the time at
which the target and distractor stimuli are presented. Response latencies will be reported
relative to this point in time. Responses given before this point are ignored.

The remaining practice trials are similar, except that they present the target in different screen
locations and therefore. Depending on whether the target is presented on the left or right side
of the screen, either "s" or "a" is de!ned as the correct response.

<trial bottomleftpractice>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=topleft, bottomlefttarget, topright,
bottomright; 1000=instructleft, instructright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial toprightpractice>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=topleft, bottomleft, toprighttarget,
bottomright; 1000=instructleft, instructright]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial bottomrightpractice>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=topleft, bottomleft, topright,
bottomrighttarget; 1000=instructleft, instructright]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>
Now it's time to de!ne the data collection trials. First, we'll de!ne the congruent trials in which
the arrow points in the same direction as the target.

<trial topleftcongruent>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=toplefttarget, bottomleft, topright,
bottomright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

This trial presents the !xation point followed by the left arrow. The target is presented in the top
left corner and the distractors in the remaining corners. Since this is a test trial, we no longer
present the instruction reminder stimuli. The following three trials are the same except that the
target is presented in the other three corners respectively.

<trial bottomleftcongruent>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=topleft, bottomlefttarget, topright,
bottomright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial toprightcongruent>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=topleft, bottomleft, toprighttarget,
bottomright]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial bottomrightcongruent>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=topleft, bottomleft, topright,
bottomrighttarget]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>
Notice that when the target is in the upper or lower left corner, the correctresponse is de!ned as
the "a" key. When the target is in the upper or lower right, the correctresponse is the "s" key. By
including both "a" and "s" in the validresponse command, the experiment will recognize either
key press as a response to the trial. All other key presses are ignored.

Finally, we'll de!ne the four types of incongruent trials.

<trial topleftincongruent>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=toplefttarget, bottomleft, topright,
bottomright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial bottomleftincongruent>
/ stimulustimes = [0=!xation; 500=rightarrow; 700=topleft, bottomlefttarget, topright,
bottomright]
/ correctresponse = ("a")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial toprightincongruent>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=topleft, bottomleft, toprighttarget,
bottomright]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>

<trial bottomrightincongruent>
/ stimulustimes = [0=!xation; 500=leftarrow; 700=topleft, bottomleft, topright,
bottomrighttarget]
/ correctresponse = ("s")
/ validresponse = ("s", "a")
/ responsetime = 700
</trial>
We're !nished with the trials. Now let's de!ne the blocks.

4-Creating Blocks

The next step is to de!ne the different kinds of blocks that will be used in the experiment. For
this experiment, we will de!ne 2 blocks, 1 to run the practice trials and 1 for data collection.

First, let’s de!ne the practice block element.

<block covertattentionpractice>
/ trials = [1-4 = noreplace(topleftpractice, bottomleftpractice, topleftpractice,
bottomrightpractice)]
/ bgstim = (!xation)
</block>
This block element, named covertattentionpractice, will run just 4 trials randomly selected from
the 4 practice trial types. We've speci!ed that the block should randomly select from the 4 trials
without replacement.

Since we are only running 4 trials and there are 4 to select from, that means that each type of
trial will be run exactly one time in the block, and the order in which the 4 types are selected will
randomly vary.

Now, lets de!ne the data collection block:

<block covertattention>
/ preinstructions = (begin)
/ trials = [1-20 = noreplace(topleftcongruent, bottomleftcongruent, topleftcongruent,
bottomrightcongruent,
 topleftcongruent, bottomleftcongruent, topleftcongruent,
bottomrightcongruent,
 topleftcongruent, bottomleftcongruent, topleftcongruent,
bottomrightcongruent,
 topleftcongruent, bottomleftcongruent, topleftcongruent,
bottomrightcongruent,
 topleftincongruent, bottomleftincongruent, topleftincongruent,
bottomrightincongruent)]
/ bgstim = (!xation)
/ postinstructions = (performance)
</block>
The block begins by presenting the instruction page named begin as speci!ed by the
preinstructions command. It then runs a total of 20 trials randomly selected from the list of data
collection trials. Finally, after all the trials have been run it presents an instruction page called
performance.

You may have noticed that the congruent trial types appear 4 times each in the trial list, whereas
incongruent trials appear only once. Why did we repeat some of the trials? The answer is that we
want 80% of the trials in this block to be congruent and remaining 20% incongruent, so we've
created a random selection pool where the proportion of congruent to incongrent trials is 4 to 1.
Since we are selecting without replacement, we are guaranteed that the proportion of selected
trials will match the proportions in the selection pool. Of the 20 trials, a randomly selected 16
will be congruent and 4 incongruent.

That does it for the blocks. Now let's de!ne the experiment.

5-Creating an Expt

<expt>
/ preinstructions = (inquisit, intro1, intro2)
/ blocks = [1=covertattentionpractice; 2=covertattention]
/ postinstructions = (!nish)
</expt>
The expt element is quite simple. The expt begins by showing a series of three instruction pages,
inquisit, intro1, and intro2.

Next, it runs our practice block, followed by the data collection block. Each block is run exactly
one time.

Finally, it displays a single instruction page called !nish,

Last of all, we'll customize the format in which the data is saved using the data element.

<data>
/ format = tab
</data>
The data element allows me to control what data is recorded, the order of data columns,
whether or not to include column labels on the !rst row, and what character should serve as the
column delimiter. In this experiment, we'll specify that the columns should be separated by tab
characters, which is a standard text data format recognized by any data analysis software,
including Excel and SPSS. For everything else, we'll just use the default settings.

That's it. We're done!

Tutorial: Dot Probe Task

This tutorial builds a simple version of the Dot Probe Task, a commonly used measure of
attention. Subjects are presented two words, one above the other, and they are instructed to
pronounce the upper word. Occassionally, the upper or lower word is replaced by a "!", in which
cases subjects are instructed to press the spacebar as quickly as possible. Typically, reaction
times to the "!" are shorter when it appears in the upper position because that is where subjects
are attending.

This tutorial covers the following Inquisit features:
- voicekey and keyboard responding
- text presentation
- use of "responsetrial" command to link different types of trials

On the following pages, Inquisit commands are printed in blue, and comments are printed in
black:

Steps

1. Creating Stimuli
2. Creating Instructions
3. Creating Trials
4. Creating Blocks
5. Creating an Experiment

1-Creating Text Stimuli

The !rst step in building an experiment is to de!ne all of the stimuli. Stimuli include text or
pictures to be shown on a given trial, background text that remains on the screen throughout a
block of trials, or a feedback text shown to the subject to indicate when to respond and whether
their response was correct or incorrect.

First, let’s de!ne the pleasant words appearing in the upper and lower positions:

<text pleasanttop>
/ items = pleasant
/ position = (50%, 40%)
</text>

http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingstimuli.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatinginstructions.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingtrials.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingblocks.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingexpt.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/dot_probe/dotcreatingexpt.htm

<text pleasantbottom>
/ items = pleasant
/ position = (50%, 60%)
</text>
This text element de!nes two sets of text stimuli, "pleasanttop" and "pleasantbottom", both of
which have two attributes de!ned, items and position . The items attribute indicates where the
text items are de!ned. In this case, they are de!ned in an item element named "pleasant"
somewhere else in the script (more on this below). The position attribute speci!es where on the
screen the text should be presented. Both are presented at the 50% horizontal point of screen
(i.e., the horizontal center). The pleasanttop stimulus is presented at the vertical 40% mark,
which is 10% of the screen width above center. The pleasantbottom is presented 10% below
center.

Now, lets de!ne the items for this text element:

<item pleasant>
/ 1 = " HONOR "
/ 2 = " LUCKY "
/ 3 = " DIAMOND "
/ 4 = " LOYAL "
/ 5 = " FREEDOM "
/ 6 = " RAINBOW "
/ 7 = " LOVE "
/ 8 = ” HONEST "
/ 9 = " PEACE "
/10 = " HEAVEN "
</item>
This item element is named "pleasant", which matches the name speci!ed in the items attribute
of the text element above. The item set consists of ten pleasant words. Note that the words are
padded with spaces so that they are all of equal length when presented in a !xed width font.

Now, lets de!ne the rest of the stimulus categories. First, we'll de!ne the unpleasant words:

<text unpleasanttop>
/ items = unpleasant
/ position = (50%, 40%)
</text>
<text unpleasantbottom>
/ items = unpleasant
/ position = (50%, 60%)
</text>
and the unpleasant items.

<item unpleasant>
/ 1 = " EVIL "
/ 2 = " CANCER "
/ 3 = " SICKNESS "
/ 4 = " DISASTER "
/ 5 = " POVERTY "
/ 6 = " VOMIT "
/ 7 = " BOMB "
/ 8 = " ROTTEN "
/ 9 = " ABUSE "
/10 = " MURDER "
</item>
It's a good idea to include instruction text that reminds participants how to respond to the
various stimuli. We can do this by presenting text on the screen that are shown in the
background throughout a block of trials. So, let's create the instruction text stimulus that
reminds the subject to pronounce the upper word and press the spacebar if they see '!'.

<text taskreminder>
/ items = ("Pronounce the top word and press the spacebar if you see the '!'")
/ position = (50, 15)
/ txcolor = (0, 0, 255)
/ fontstyle = ("Courier New", 12pt)
</text>
The reminder stimulus is a bit different than the previous stimuli. First, rather than de!ning the
items in a separate element, we've simply listed the single item directly in the attribute. This
inline syntax is a convenient way to de!ne small item sets for things like instrutions, focus
stimuli, and masks. Also, the position attribute speci!es that the text should be displayed at the
top of the screen. Finally,the txcolor attribute speci!es that the text should be blue rather than
the default color black. Colors in Inquisit are speci!ed as a mix of red, green, and blue
components; the txcolor attribute speci!es 0 intensity for red and green components, and the
maximum intensity 255 for the blue component, producing a nice blue color.

Now, lets de!ne the target stimuli '!'. To do this, we create two text stimuli, one of which presents
the target in the upper position, and the other which presents it in lower position:

<text targettop>
/ items = (" ! ")
/ position = (50%, 40%)
</text>
<text targetbottom>
/ items = (" ! ")
/ position = (50%, 60%)
</text>

Finally, lets de!ne a focus stimuli that will appear in the center of the screen prior to the two
words:

<text focuspoint>
/ items = (" + ")
</text>

2-Creating Instructions

Now lets de!ne a set of instruction pages that inform the subject how to perform the task.
De!ning the instruction pages is easy using the page element. First, we'll de!ne a simple
welcome page.

<page intro>
^^^Dot Probe Task
^^Welcome and thank you for participating in this task.
^^This task requires that you have a working microphone connected to your computer. If you do
not have a microphone, please press Ctrl+Q now to end the script.
</page>
Note that the "^" character is used to force a line break. Otherwise, lines of text are word-
wrapped. Now we'll de!ne the rest of the instruction pages:

<page task>
Dot Probe Task Instructions:^^
On each trial, two words will be displayed. Your task is to pronounce the TOP word as rapidly as
possible while ignoring the BOTTOM word. ^^
Sometimes, one of the words will be replaced by "!". If you see the "!", press the spacebar as
quickly as possible.
</page>

<page taskreminder>
Reminder: Pronounce the TOP word as rapidly as possible while ignoring the BOTTOM word. ^^
If you see the "!", press the spacebar as quickly as possible.
</page>

<page end>
The Dot Probe Task is now concluded.
^^This task illustrates the effect of attention on processing visual stimuli. Typically, people
respond to the "!" more quickly when it appears in the top location because that's where they
are focusing their attention.
</page>

Finally, we'll specify how participants can navigate through the instruction pages using the
instruct element. A script should have only one such element.

<instruct>
/ nextkey = (" ")
/ lastlabel = ("Press the spacebar to continue")
/ nextlabel = ("Press the spacebar to continue")
/ fontstyle = ("Arial", 16pt)
</instruct>
The nextkey attribute indicates that participants must press the spacebar key to advance to the
next page. The nextlabel and lastlabel attributes speci!es the text to display on the button label
for advancing to the next instruction page, or past the last instruction page. Finally, the fontstyle
attribute speci!es that instructions should be presented in a 16pt Arial font.

3-Creating Trials

The next step is to de!ne the different kinds of trials that will be used in the Dot Probe Task. Trial
elements control which stimuli are presented and how the subject may respond to those stimuli.
There are eight types of trials used in this task depending on which category of word is
presented in the upper position, and whether the word is replaced by a "!" or another word.

First, let’s de!ne trials that do not replace the words with a '!'.

<trial pleasant>
/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]
/ inputdevice = voicekey
</trial>
The trial element’s name is pleasant . On each line of data in the data !le corresponding to this
type of trial, this trial name is written.

The stimulustimes attribute de!nes the stimulus presentation sequence of the trial. The focus
stimulus is presented for 500 milliseconds, after which pleasant and unpleasant words are
presented in the upper and lower positions respectively.

The inputdevice attribute speci!es the type of input expected from the participant. In this case,
the inputdevice is "voicekey", which means that Inquisit will treat any sound through the
microphone as a valid response, regardless of whether the sound was a valid word.

If we cared about whether the spoken response was an actual word, we could have set this
parameter to "speech", in which case Inquisit will use a speech recognition engine to analyze the
content of what was said.

Next, we'll de!ne a trial elementsimilar to pleasant, differing only in the location where the
pleasant and unpleasant stimulis are presented. Here's the de!nition of trials with unpleasant
words in the top position:

<trial unpleasant>
/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]
/ inputdevice = voicekey
</trial>
Next come the trials in which one of the words is replaced by a '!'.

<trial pleasanttargettop>
/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]
/ inputdevice = voicekey
/ responsetrial = (anyresponse, targettoppleasant)
</trial>
This trial is similar to the two trials above, except that it includes the responsetrial command. The
response trial speci!es a follow up trial to run if a particular response is given. In this case, the
followup trial is named "targettopleasant" and the response is any response. So, whenever this
trial runs, it is immediately followed by a trial named "targettoppleasant" to be de!ned below.
This follow up trial presents the '!' stimulus and times the spacebar press.

We will now de!ne the other 2 such trials based on whether the pleasant word is in the upper or
lower position, and whether the target is in the upper or lower position.

Trials with insect names classi!ed with the "a" key:

<trial unpleasanttargettop>
/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]
/ inputdevice = voicekey
/ responsetrial = (anyresponse, targettopunpleasant)
</trial>
<trial pleasanttargetbottom>
/ stimulustimes = [1=focuspoint; 500=pleasanttop, unpleasantbottom]
/ inputdevice = voicekey
/ responsetrial = (anyresponse, targetbottompleasant)
</trial>

<trial unpleasanttargetbottom>
/ stimulustimes = [1=focuspoint; 500=unpleasanttop, pleasantbottom]
/ inputdevice = voicekey
/ responsetrial = (anyresponse, targetbottomunpleasant)
</trial>
Finally, we'll de!ne the actual follow up trials that present the '!' in the upper or lower position.
The !rst two such trials are identical except for the name. Note that they specify "keyboard" as
the inputdevice (this is actually the default, so this command is optional), and spacebar is listed
as the only valid and correct response.

<trial targettoppleasant>
/ stimulustimes = [1=targettop]
/ inputdevice = keyboard
/ correctresponse = (" ")
</trial>
<trial targettopunpleasant>
/ stimulustimes = [1=targettop]
/ inputdevice = keyboard
/ correctresponse = (" ")
</trial>
Since these two trials are identical, why did we de!ne two such trials instead of one? The reason
is so that we can easily determine in the data !le whether the follow up trial was preceded by an
unpleasant or pleasant word. Speci!cally, the "targettoppleasant" trial is always run after a
pleasant word was presented in the upper position, and the "targettopunpleasant" is run after
an unpleasant word was in the upper position. Thus, we can analyze the effect of pleasant vs
unpleasant by looking at the trial name rather than what was presented on the previous trial.

Last, we'll de!ne the two trials that present the target '!' in the lower position.

<trial targetbottompleasant>
/ stimulustimes = [1=targetbottom]
/ inputdevice = keyboard
/ correctresponse = (" ")
</trial>
<trial targetbottomunpleasant>
/ stimulustimes = [1=targetbottom]
/ inputdevice = keyboard
/ correctresponse = (" ")
</trial>
Again, these two trials are identical except for their name, but we can use the name to identify
whether the preceding trial presented a pleasant or unpleasant word in the upper position.

4-Creating Blocks

The next step is to de!ne the different kinds of blocks that will be used in the experiment. Blocks
represent sequences of trials that can be in random or !xed order. For this experiment, two block
elements will be de!ned, one for practice trials and one for data collection.

First, let’s de!ne the practice block element for the task.

<block practice>
/ trials = [1-20 = noreplace(pleasant, pleasant, unpleasant, unpleasant, pleasanttargettop,
pleasanttargetbottom, unpleasanttargettop, unpleasanttargetbottom)]
/ bgstim = (taskreminder)
</block>
This block element is named "practice". The trials attribute speci!es that the block runs 20 trials
randomly selected without replacement from a set of 8 different trials. You may have noticed
that 2 of the trials, "pleasant" and "unpleasant", are listed twice. The reason is that we wanted
exactly half of the trials in the block to be followed up with a target '!', and the other half not to
have a follow up. As the trials attribute is speci!ed, 2 of every 8 trials in the block will be
"pleasant", 2 will be "unpleasant", 1 will be "pleasanttargettop", 1 will be pleasanttargetbottom, 1
will be unpleasanttargettop, and 1 will be unpleasanttargetbottom.

The bgstim attribute speci!es that the "taskreminder" instruction text stimulus is presented on
the screen as background.

The nonpractice block below (named "critical") is quite similar:

<block critical>
/ preinstructions = (taskreminder)
/ trials = [1-36 = noreplace(pleasant, pleasant, pleasant, pleasant, unpleasant, unpleasant,
unpleasant, unpleasant, pleasanttargettop, pleasanttargetbottom, unpleasanttargettop,
unpleasanttargetbottom)]
</block>
One difference is that the critical block presents the "taskreminder" instruction page at the
beginning of the block as speci!ed by the "preinstructions" attribute. The other difference is that
there are 4 "pleasant" and 4 "unpleasant" trials in the selection pool rather than 2 of each. The
proportion of trials with follow up trials is now 4 out of 12, or 33%.

5-Creating an Expt

The next step is to de!ne an expt element that de!nes the "ow of blocks in the experiment. The
expt element is de!ned as follows:

<expt>
/ preinstructions = (intro, task, taskreminder)
/ postinstructions = (end)
/ blocks = [1=practice; 2,3=critical]
</expt>
The expt element is simple. The preinstructions attribute begings the expt by showing subjects
the 3 pages of instructions, "intro", "task", and "taskreminder". The postinstructions attribute
speci!es !nal instruction page named "end" to be displayed at the conclusion of the experiment.
The blocks attribute speci!es that 1 practice block is run followed by 2 critical blocks.

Finally, we'll do a little !ne tuning by specifying some default settings using the defaults element.

<defaults>
/ fontstyle = ("Courier New", 16pt)
/ posttrialpause = 500
</defaults>
The fontstyle attribute speci!es that all stimulus and instruction text should be displayed in a
16pt "Courier New" font. The postrialpause attribute speci!es that a 500 ms pause should occur
at the end of each trial.

The experiment is now complete! You can run the experiment by selecting the "Run" command
on the "Experiment" menu.

Tutorial: Demographic Survey

This tutorial builds a simple demographic survey. The sample demonstrates how to design a
survey using different types of questions, including dropdown, radiobutton, and textbox
questions. It also shows how to place validation rules on textbox input, and to adjust the font
and layout of the survey.

On the following pages, Inquisit commands are printed in blue, and comments are printed in
black:

Steps

1. Creating Survey Questions
2. Creating More Survey Questions
3. Creating a Survey Page
4. Creating a Survey

1-Creating Survey Questions

First, we'll create the questions that make up the survey. For any given question, there are a
variety of user interface controls at our disposal that give participants a means of making a
response. The choice of control depends on the style of question.

The !rst question on our survey asks respondents to indicate their sex. This is a multiple choice
question with two mutually exclusive options. There are a few different controls we can use for
this type of question - speci!cally radiobuttons, listbox, or dropdown. For this question, we'll use
the dropdown control because of its space efficiency.

Here is the syntax for creating this dropdown survey item:

<dropdown sex>
/ caption = "Sex"
/ options = ("female", "male")
</dropdown>
The type of the element is dropdown. When users click the control, the list of response options
"drops down", allowing them to click on their chosen option. The name of the item is "sex". We'll
refer to this item by its name later on in the tutorial when we specify where the item should
appear on the page. The caption attribute represents the question or instructions the
respondents will see for that item. In this case, that caption is simply "Sex".

http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/questions1.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/questions1.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/questions2.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/questions2.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/surveypage.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/survey.htm
http://www.millisecond.com/support/docs/v3/html/tutorials/demographic_survey/survey.htm

Finally, the options attribute de!nes the response choices -- either "male" or "female" -- in the
dropdown list. Pretty simple.

The next item will ask for the respondent's age. Since there are 100 or more possible responses
to this question, a multiple choice format would be cumbersome. Instead, we'll use the textbox
element, which simply allow users to type their age into a textbox (or as some call it, an edit
box). Here is the de!nition of our age item:

<textbox age>
/ caption = "Age"
/ mask = positiveinteger
/ range = (7, 110)
</textbox>
Note the element type is textbox and the name is "age". This time, the caption says "Age". Since
respondents occassionally make mistakes when typing, we want to make sure the text they
enter is in fact a valid age. The mask attribute provides a power tool for constraining the type of
input that is allowed. In this case, we've set the mask to "positiveinteger", which means that
anything other than a positive integer will be considered invalid. However, we don't want to
allow just any positive integer. If the respondent types "1" for example, we know that can't be
correct because one year-olds don't typically respond to surveys. Similarly, a response of 230432
s invalid because people don't live that long. So, we'll use the range attribute to contrain the
range of valid ages to a value from 7 to 110.

Next up is the respondent's ethnicity. Just as before, we'll use a dropdown, specifying a caption
and the response choices:

<dropdown ethnicity>
/ caption = "Ethnicity"
/ options = ("Hispanic or Latino", "Not Hispanic or Latino", "Unknown")
</dropdown>
The next question asks for the respondent's race. This is another multiple choice question, but
it's slightly different than the previous ones because we'll want to include an "other" option that
allows the respondent to enter a response that doesn't appear in the list of options. The
dropdown question doesn't support the "other" option, but the radiobuttons control does, so
we'll use that:

<radiobuttons race>
/ caption = "Race"
/ options = (
 "American Indian/Alaska Native",
 "East Asian",
 "South Asian",

 "Native Hawaian or other Paci!c Islander",
 "Black or African American",
 "White",
 "More than one race - Black/White")
/ other = "Other"
</radiobuttons>
The radiobuttons* element has caption and option attributes that serve the same purpose as
they do with the dropdown element. However, we've speci!ed another attribute called other
that tells Inquisit to add an "Other" option to the response choices. That options will include a
textbox in which respondents can type their race if it isn't in the list.

*Sidenote: You may be wondering why this control is called "radiobuttons". If you were born
before 1970, you might recall that the car radios at the time often had a row of punch buttons
for selecting a preset radio station. When you punched in one button, the previously selected
button popped out, thus assuring that only one station could be selected at a time. The
radiobuttons user interface control functions in a similar way, so the name caught on.

Next, we'll ask for participant's political identity. This, too, is a multiple choice question, so either
the dropdown or radiobuttons controls would work just !ne. However, since liberal is generally
associated with "left" and conservative with "right", we'll use a slider control in order to leverages
this common association. With a slider control, users respond by sliding a button along a track
until it is in the desired position. The track can offer a near-continuous array of positions, or it can
force the button into a !xed number of discrete locations. Positions along the track can be
labeled to indicate their meaning. With our slider control, respondents will move the button
leftward to indicate increasingly liberal values and rightward to indicate increasingly
conservative values. Our slider item is de!ned as follows:

<slider political>
/ caption = "Political Identity"
/ labels = (
 "strongly~nliberal", "moderately~nliberal", "slightly~nliberal",
 "neutral", "slightly~nconservative", "moderately~nconservative",
 "strongly~nconservative")
/ range = (1, 7)
/ slidersize = (60%, 5%)
/ showtooltips = false
</slider>
The caption attribute has the same function as in the previous items. The labels attribute
speci!es the labels that appear in equal distances from left to right along the slider track. Note
that labels include the characters "~n". This is not a typo, it is a special character sequence
indicating that Inquisit should insert a line break in that position when displaying the label on
the screen.

The range attribute de!nes the number of positions on the track. In this case, there are seven
positions who's values range from 1 to 7. Since there also seven labels, each position will align
with each of the labels. Next, we'll use to slidersize attribute de!ne the width and height of the
slider so that it is wide enough to accomodate all of the labels. We've set the width to be 60% of
the width of the computer screen, which should give it plenty of room. Finally, we've set the
showtooltips attribute to false, so that the control doesn't display the values of each position in a
tooltip as the user moves the button along the slider.

For the respondent's occupation, we'll again use a dropdown control. The dropdown is
particularly useful in this case because it allows us to display a large number of options in a small
amount of screen space:

<dropdown occupation>
/ caption = "Occupation"
/ options = ("Administrative Support - Supervisors", "Administrative Support - Financial Clerks",
 "Administrative Support - Information and Records",
 "Administrative Support - Recording, Scheduling, Dispatching, Distributing",
 "Administrative Support - Secretaries and Assistants",
 "Administrative Support - Other Support (data entry, office clerk, proofreaders)",
 "Arts/Design/Entertainment/Sports - Art and Design", "Arts/Design/Entertainment/Sports -
Entertainers and Performers",
 "Arts/Design/Entertainment/Sports - Media and communication", "Arts/Design/Entertainment/
Sports - Media Equipment workers",
 "Business - Business Operations", "Business - Financial Specialists", "Computer/Math - Computer
Specialists",
 "Computer/Math - Math Scientists","Computer/Math - Math Technicians", "Construction/
Extraction - Supervisors",
 "Construction/Extraction - Construction Trades","Construction/Extraction - Helpers, Construction
Trades",
 "Construction/Extraction - Extraction (e.g., mining, oil)", "Construction/Extraction - Other",
 "Education - Postsecondary Teachers", "Education - Primary, Secondary, and Special Ed Teachers",
 "Education - Other teachers and instructors", "Education - Librarians, Curators, Archivists",
 "Education - Other education, training, and library occupations", "Education - Student",
 "Engineers/Architects - Architects, Surveyors, Cartographers", "Engineers/Architects - Engineers",
 "Engineers/Architects - Drafters, Engineering and Mapping Technicians", "Farming, Fishing,
Forestry - Supervisors",
 "Farming, Fishing, Forestry - Agriculture","Farming, Fishing, Forestry - Fishing and Hunting",
 "Farming, Fishing, Forestry - Forest, Conservation, Logging", "Farming, Fishing, Forestry - Other",
 "Food Service - Supervisors", "Food Service - Cooks and food prep", "Food Service - Servers",
 "Food Service - Other food service workers (e.g., dishwasher, host)",
 "Healthcare - Diagnosing and Treating Practitioners (MD, Dentist, etc.)",

"Healthcare - Technologists and Technicians", "Healthcare - Nursing and Home Health Assistants",
 "Healthcare - Occupational and Physical Therapist Assistants", "Healthcare - Other healthcare
support",
 "Homemaker or Parenting", "Legal - Lawyers, Judges, and related workers", "Legal - Legal support
workers",
 "Maintenance - Building and Grounds Supervisors", "Maintenance - Building
workers","Maintenance - Grounds Maintenance",
 "Management - Top Executives", "Management - Adver t is ing, Sales, PR,
Marketing","Management - Operations Specialists",
 "Management - Other Management Occupations", "Military - Officer and Tactical Leaders/
Managers",
 "Military - First-line enlisted supervisor/manager", "Military - enlisted tactical, air/weapons, crew,
other",
 "Production - Supervisors", "Production - Assemblers and Fabricators","Production - Food
processing",
 "Production - Metal and Plastic", "Production - Printers", "Production - Textile, Apparel,
Furnishings",
 "Production - Woodworkers", "Production - Plant and System Operators", "Production - Other",
 "Protective Service - Supervisors", "Protective Services - Fire !ghting and prevention",
 "Protective services - Law Enforcement", "Protective Services - Other (e.g., security, lifeguards,
crossing guards)",
 "Repair/Installation - Supervisors", "Repair/Installation - Electrical and Electronic",
 "Repair/Installation - Vehicle and Mobile Equipment", "Repair/Installation - Other", "Retired",
 "Sales - Supervisors", "Sales - Retail","Sales - Sales Representatives and Services",
 "Sales - Wholesale and Manufacturing", "Sales - Other sales (e.g., telemarketers, real estate)",
 "Science - Life Scientists", "Science - Physical scientists","Science - Social Scientists",
 "Science - Life, Physical, Social Science Technicians", "Service and Personal Care - Supervisors",
 "Service and Personal Care - Animal Care","Service and Personal Care - Entertainment
attendants",
 "Service and Personal Care - Funeral Service", "Service and Personal Care - Personal Appearance",
 "Service and Personal Care - Transportation, Tourism, Lodging",
 "Service and Personal Care - Other service (e.g., child care, !tness)",
 "Social Service - Counselors, Social Workers, Community specialists", " S o c i a l S e r v i c e -
Religious Workers",
 "Transportation - Supervisors", "Transportation - Air Transportation","Transportation - Motor
Vehicle Operators",
 "Transportation - Rail Transport", "Transportation - Water Transport", "Transportation - Material
Moving",
 "Transportation - Other", "Unemployed")
/ optionvalues = (
 "43-1000", "43-3000", "43-4000", "43-5000", "43-6000", "43-9000", "27-1000", "27-2000", "27-3000",
 "27-4000", "13-1000", "13-2000", "15-1000", "15-2000", "15-3000", "47-1000", "47-2000", "47-3000",
 "47-5000", "47-4000", "25-1000", "25-2000", "25-3000", "25-4000", "25-9000", "25-9999", "17-1000",

 "17-2000", "17-3000", "45-1000", "45-2000", "45-3000", "45-4000", "45-9000", "35-1000", "35-2000",
 "35-3000", "35-9000", "29-1000", "29-2000", "31-1000", "31-2000", "31-9000", "00-0000", "23-1000",
 "23-2000", "37-1000", "37-2000", "37-3000", "11-0000", "11-2000", "11-3000", "11-9000", "55-1000",
 "55-2000", "55-3000", "51-1000", "51-2000", "51-3000", "51-4000", "51-5000", "51-6000", "51-7000",
 "51-8000", "51-9000", "33-1000", "33-2000", "33-3000", "33-9000", "49-1000", "49-2000", "49-3000",
 "49-9000", "99-0001", "41-1000", "41-2000", "41-3000", "41-4000", "41-9000", "19-1000", "19-2000",
 "19-3000", "19-4000", "39-1000", "39-2000", "39-3000", "39-4000", "39-5000", "39-6000", "39-9000",
 "21-1000", "21-2000", "53-1000", "53-2000", "53-3000", "53-4000", "53-5000", "53-7000", "53-6000",
 "99-9999")
</dropdown>

As you can see, there are a lot of choices in the list! You may have also noticed that we're using
the optionvalues attribute. By default, Inquisit records the text of the selected option into the
data !le. The optionvalues attribute allows us to assign alternative values to each option to be
used in recording the data. This is handy if you want to use numeric values or codes when
analyzing the data rather than the sometimes long strings of text that are displayed for each
response choice. In this case, each occupation will be recorded using the Standard Occupational
Classi!cation code as de!ned by the US Department of Labor.

2-Creating More Survey Questions

The next item allows respondents to indicate their religion. Again, we'll use a dropdown given
the large number of options.

<dropdown religion>
/ caption = "Religious Affiliation"
/ options = (
 "None", "African Methodist Episcopal Church", "African Methodist Episcopal Zion Church",
"Agnostic",
 "American Baptist Association", "American Baptist Churches in the U.S.A.",
 "Antiochian Orthodox Christian Diocese of North America", "Armenian Apostolic Church of
America",
 "Assemblies of God", "Atheist", "Baha'i", "Baptist Bible Fellowship International", "Baptist General
Conference",
 "Baptist Missionary Association of America", "Buddhist", "Christian and Missionary Alliance, The",
 "Christian Brethren (Plymouth Brethren)", "Christian Church (Disciples of Christ)",
 "Christian Churches and Churches of Christ", "Christian Congregation, Inc., The", "Christian
Methodist Episcopal Church",
 "Christian Reformed Church in North America", "Church of God in Christ", "Church of God of
Prophecy",

 "Church of God (Anderson, IN)", "Church of God (Cleveland, TN)", "Church of Jesus Christ of
Latter-day Saints, The",
 "Church of the Brethren", "Church of the Nazarene", "Churches of Christ", "Conservative Baptist
Association of America",
 "Coptic Orthodox Church", "Cumberland Presbyterian Church", "Eastern Orthodox", "Eastern
Orthodox", "Ecumenical",
 "Episcopal Church", "Evangelical Covenant Church, The", "Evangelical Free Church of America,
The",
 "Evangelical Lutheran Church in America", "Evangelical Presbyterian Church", "Free Methodist
Church of North America",
 "Full Gospel Fellowship of Churches and Ministers Intl", "General Association of General Baptists",
 "General Association of Regular Baptist Churches", "General Conference Mennonite Brethren
Churches",
 "Grace Gospel Fellowship", "Greek Orthodox Archdiocese of America", "Hindu", "Independent
Fundamental Churches of America",
 "International Church of the Foursquare Gospel", "International Council of Community
Churches",
 "International Pentecostal Holiness Church", "Jehovah's Witnesses", "Jewish", "Lutheran Church-
Missouri Synod, The",
 "Mennonite Church", "Muslim/Islamic", "National Assoc of Congregational Christian Churches",
 "National Association of Free Will Baptists", "National Baptist Convention of America, Inc.",
 "National Baptist Convention, USA, Inc.", "National Missionary Baptist Convention of America",
"Old Order Amish Church",
 "Orthodox Church in America", "Pentecostal Assemblies of the World, Inc.", "Pentecostal Church
of God",
 "Pentecostal Church of God", "Presbyterian Church in America", "Presbyterian Church (U.S.A.)",
 "Progressive National Baptist Convention, Inc.", "Reformed Church in America", "Religious Society
of Friends (Conservative)",
 "Reorganized Church of Jesus Christ of Latter Day Saints", "Roman Catholic Church, The",
 "Romanian Orthodox Episcopate of America, The", "Salvation Army,The", "Serbian Orthodox
Church in the U.S.A. and Canada",
 "Seventh-day Adventist Church", "Sikh", "Southern Baptist Convention", "Unitarian Universalist",
"United Church of Christ",
 "United Methodist Church, The", "Wesleyan Church, The", "Wisconsin Evangelical Lutheran
Synod", "Other")
</dropdown>
Next is education level, again using a dropdown.

<dropdown education>
/ caption = "Education"
/ options = ("elementary", "junior high", "some highschool", "high school graduate", "some
college",

"associate's degree", "bachelor's degree", "some graduate school", "masters degree", "M.B.A.",
 "J.D.", "M.D.", "Ph.D.", "other advanced degree")
</dropdown>
The next two items ask for country of citizenship and residence, respectively. The name of each
country will be displayed in our dropdown list, as speci!ed by the options attribute. The value
recorded in the data !le will be the two letter postal abbreviation for that country, as speci!ed
by the optionsvalues attribute.

<dropdown citizenship>
/ caption = "Country/Region of Primary Citizenship"
/ options = (
 "U.S.A.", "Afghanistan", "Albania", "Algeria", "American Samoa", "Andorra", "Angola",
 "Anguilla", "Antarctica", "Antigua And Barbuda", "Argentina", "Armenia", "Aruba",
 "Australia", "Austria", "Azerbaijan", "Bahamas, The", "Bahrain", "Bangladesh", "Barbados",
 "Belarus", "Belgium", "Belize", "Benin", "Bermuda", "Bhutan", "Bolivia", "Bosnia and Herzegovina",
 "Botswana", "Bouvet Island", "Brazil", "British Indian Ocean Territory", "Brunei", "Bulgaria",
 "Burkina Faso", "Burundi", "Cambodia", "Cameroon", "Canada", "Cape Verde", "Cayman Islands",
 "Central African Republic", "Chad", "Chile", "China", "Christmas Island", "Cocos (Keeling) Islands",
 "Colombia", "Comoros", "Congo", "Congo, Democratic Republic of the", "Cook Islands", "Costa
Rica",
 "Cote D'Ivoire (Ivory Coast)", "Croatia (Hrvatska)", "Cuba", "Cyprus", "Czech Republic", "Denmark",
 "Djibouti", "Dominica", "Dominican Republic", "East Timor", "Ecuador", "Egypt", "El Salvador",
 "Equatorial Guinea", "Eritrea", "Estonia", "Ethiopia", "Falkland Islands (Islas Malvinas)",
 "Faroe Islands", "Fiji Islands", "Finland", "France", "French Guiana", "French Polynesia",
 "French Southern Territories", "Gabon", "Gambia, The", "Georgia", "Germany", "Ghana", "Gibraltar",
 "Greece", "Greenland", "Grenada", "Guadeloupe", "Guam", "Guatemala", "Guinea", "Guinea-Bissau",
 "Guyana", "Haiti", "Heard and McDonald Islands", "Honduras", "Hong Kong S.A.R.", "Hungary",
 "Iceland", "India", "Indonesia", "Iran", "Iraq", "Ireland", "Israel", "Italy", "Jamaica", "Japan",
 "Jordan", "Kazakhstan", "Kenya", "Kiribati", "Korea", "Korea, North", "Kuwait", "Kyrgyzstan",
 "Laos", "Latvia", "Lebanon", "Lesotho", "Liberia", "Libya", "Liechtenstein", "Lithuania", "Luxembourg",
 "Macau S.A.R.", "Macedonia, Former Yugoslav Republic of", "Madagascar", "Malawi", "Malaysia",
 "Maldives", "Mali", "Malta", "Marshall Islands", "Martinique", "Mauritania", "Mauritius", "Mayotte",
 "Mexico", "Micronesia", "Moldova", "Monaco", "Mongolia", "Montserrat", "Morocco", "Mozambique",
 "Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands Antilles", "Netherlands, The", "New
Caledonia",
 "New Zealand", "Nicaragua", "Niger", "Nigeria", "Niue", "Norfolk Island", "Northern Mariana Islands",
 "Norway", "Oman", "Pakistan", "Palau", "Panama", "Papua New Guinea", "Paraguay", "Peru",
 "Philippines", "Pitcairn Island", "Poland", "Portugal", "Puerto Rico", "Qatar", "Reunion",
 "Romania", "Russia", "Rwanda", "Saint Helena", "Saint Kitts And Nevis", "Saint Lucia",
 "Saint Pierre and Miquelon", "Saint Vincent And The Grenadines", "Samoa", "San Marino",
 "Sao Tome and Principe", "Saudi Arabia", "Senegal", "Seychelles", "Sierra Leone", "Singapore",
 "Slovakia", "Slovenia", "Solomon Islands", "Somalia", "South Africa",

 "South Georgia And The South Sandwich Islands", "Spain", "Sri Lanka", "Sudan", "Suriname",
 "Svalbard And Jan Mayen Islands", "Swaziland", "Sweden", "Switzerland", "Syria", "Taiwan",
"Tajikistan",
 "Tanzania", "Thailand", "Togo", "Tokelau", "Tonga", "Trinidad And Tobago", "Tunisia", "Turkey",
 "Turkmenistan", "Turks And Caicos Islands", "Tuvalu", "Uganda", "Ukraine", "United Arab Emirates",
 "United Kingdom", "U.S.A.", "United States Minor Outlying Islands", "Uruguay", "Uzbekistan",
 "Vanuatu", "Vatican City State (Holy See)", "Venezuela", "Vietnam", "Virgin Islands (British)",
 "Virgin Islands (US)", "Wallis And Futuna Islands", "Yemen", "Yugoslavia", "Zambia", "Zimbabwe")
/ optionvalues = (
 "US", "AF", "AL", "DZ", "AS", "AD", "AO", "AI", "AQ", "AG", "AR", "AM", "AW", "AU", "AT", "AZ", "BS",
 "BH", "BD", "BB", "BY", "BE", "BZ", "BJ", "BM", "BT", "BO", "BA", "BW", "BV", "BR", "IO", "BN", "BG",
 "BF", "BI", "KH", "CM", "CA", "CV", "KY", "CF", "TD", "CL", "CN", "CX", "CC", "CO", "KM", "CG", "CD",
 "CK", "CR", "CI", "HR", "CU", "CY", "CZ", "DK", "DJ", "DM", "DO", "TP", "EC", "EG", "SV", "GQ", "ER",
 "EE", "ET", "FK", "FO", "FJ", "FI", "FR", "GF", "PF", "TF", "GA", "GM", "GE", "DE", "GH", "GI", "GR",
 "GL", "GD", "GP", "GU", "GT", "GN", "GW", "GY", "HT", "HM", "HN", "HK", "HU", "IS", "IN", "ID", "IR",
 "IQ", "IE", "IL", "IT", "JM", "JP", "JO", "KZ", "KE", "KI", "KR", "KP", "KW", "KG", "LA", "LV", "LB",
 "LS", "LR", "LY", "LI", "LT", "LU", "MO", "MK", "MG", "MW", "MY", "MV", "ML", "MT", "MH", "MQ", "MR",
 "MU", "YT", "MX", "FM", "MD", "MC", "MN", "MS", "MA", "MZ", "MM", "NA", "NR", "NP", "AN", "NL", "NC",
 "NZ", "NI", "NE", "NG", "NU", "NF", "MP", "NO", "OM", "PK", "PW", "PA", "PG", "PY", "PE", "PH", "PN",
 "PL", "PT", "PR", "QA", "RE", "RO", "RU", "RW", "SH", "KN", "LC", "PM", "VC", "WS", "SM", "ST", "SA",
 "SN", "SC", "SL", "SG", "SK", "SI", "SB", "SO", "ZA", "GS", "ES", "LK", "SD", "SR", "SJ", "SZ", "SE",
 "CH", "SY", "TW", "TJ", "TZ", "TH", "TG", "TK", "TO", "TT", "TN", "TR", "TM", "TC", "TV", "UG", "UA",
 "AE", "UK", "US", "UM", "UY", "UZ", "VU", "VA", "VE", "VN", "VG", "VI", "WF", "YE", "YU", "ZM", "ZW")
</dropdown>

<dropdown residence>
/ caption = "Country/Region of Residence"
 "U.S.A.", "Afghanistan", "Albania", "Algeria", "American Samoa", "Andorra", "Angola",
 "Anguilla", "Antarctica", "Antigua And Barbuda", "Argentina", "Armenia", "Aruba",
 "Australia", "Austria", "Azerbaijan", "Bahamas, The", "Bahrain", "Bangladesh", "Barbados",
 "Belarus", "Belgium", "Belize", "Benin", "Bermuda", "Bhutan", "Bolivia", "Bosnia and Herzegovina",
 "Botswana", "Bouvet Island", "Brazil", "British Indian Ocean Territory", "Brunei", "Bulgaria",
 "Burkina Faso", "Burundi", "Cambodia", "Cameroon", "Canada", "Cape Verde", "Cayman Islands",
 "Central African Republic", "Chad", "Chile", "China", "Christmas Island", "Cocos (Keeling) Islands",
 "Colombia", "Comoros", "Congo", "Congo, Democratic Republic of the", "Cook Islands", "Costa
Rica",
 "Cote D'Ivoire (Ivory Coast)", "Croatia (Hrvatska)", "Cuba", "Cyprus", "Czech Republic", "Denmark",
 "Djibouti", "Dominica", "Dominican Republic", "East Timor", "Ecuador", "Egypt", "El Salvador",
 "Equatorial Guinea", "Eritrea", "Estonia", "Ethiopia", "Falkland Islands (Islas Malvinas)",
 "Faroe Islands", "Fiji Islands", "Finland", "France", "French Guiana", "French Polynesia",
 "French Southern Territories", "Gabon", "Gambia, The", "Georgia", "Germany", "Ghana", "Gibraltar",
 "Greece", "Greenland", "Grenada", "Guadeloupe", "Guam", "Guatemala", "Guinea", "Guinea-Bissau",

"Guyana", "Haiti", "Heard and McDonald Islands", "Honduras", "Hong Kong S.A.R.", "Hungary",
 "Iceland", "India", "Indonesia", "Iran", "Iraq", "Ireland", "Israel", "Italy", "Jamaica", "Japan",
 "Jordan", "Kazakhstan", "Kenya", "Kiribati", "Korea", "Korea, North", "Kuwait", "Kyrgyzstan",
 "Laos", "Latvia", "Lebanon", "Lesotho", "Liberia", "Libya", "Liechtenstein", "Lithuania", "Luxembourg",
 "Macau S.A.R.", "Macedonia, Former Yugoslav Republic of", "Madagascar", "Malawi", "Malaysia",
 "Maldives", "Mali", "Malta", "Marshall Islands", "Martinique", "Mauritania", "Mauritius", "Mayotte",
 "Mexico", "Micronesia", "Moldova", "Monaco", "Mongolia", "Montserrat", "Morocco", "Mozambique",
 "Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands Antilles", "Netherlands, The", "New
Caledonia",
 "New Zealand", "Nicaragua", "Niger", "Nigeria", "Niue", "Norfolk Island", "Northern Mariana Islands",
 "Norway", "Oman", "Pakistan", "Palau", "Panama", "Papua New Guinea", "Paraguay", "Peru",
 "Philippines", "Pitcairn Island", "Poland", "Portugal", "Puerto Rico", "Qatar", "Reunion",
 "Romania", "Russia", "Rwanda", "Saint Helena", "Saint Kitts And Nevis", "Saint Lucia",
 "Saint Pierre and Miquelon", "Saint Vincent And The Grenadines", "Samoa", "San Marino",
 "Sao Tome and Principe", "Saudi Arabia", "Senegal", "Seychelles", "Sierra Leone", "Singapore",
 "Slovakia", "Slovenia", "Solomon Islands", "Somalia", "South Africa",
 "South Georgia And The South Sandwich Islands", "Spain", "Sri Lanka", "Sudan", "Suriname",
 "Svalbard And Jan Mayen Islands", "Swaziland", "Sweden", "Switzerland", "Syria", "Taiwan",
"Tajikistan",
 "Tanzania", "Thailand", "Togo", "Tokelau", "Tonga", "Trinidad And Tobago", "Tunisia", "Turkey",
 "Turkmenistan", "Turks And Caicos Islands", "Tuvalu", "Uganda", "Ukraine", "United Arab Emirates",
 "United Kingdom", "U.S.A.", "United States Minor Outlying Islands", "Uruguay", "Uzbekistan",
 "Vanuatu", "Vatican City State (Holy See)", "Venezuela", "Vietnam", "Virgin Islands (British)",
 "Virgin Islands (US)", "Wallis And Futuna Islands", "Yemen", "Yugoslavia", "Zambia", "Zimbabwe")
/ optionvalues = (
 "US", "AF", "AL", "DZ", "AS", "AD", "AO", "AI", "AQ", "AG", "AR", "AM", "AW", "AU", "AT", "AZ", "BS",
 "BH", "BD", "BB", "BY", "BE", "BZ", "BJ", "BM", "BT", "BO", "BA", "BW", "BV", "BR", "IO", "BN", "BG",
 "BF", "BI", "KH", "CM", "CA", "CV", "KY", "CF", "TD", "CL", "CN", "CX", "CC", "CO", "KM", "CG", "CD",
 "CK", "CR", "CI", "HR", "CU", "CY", "CZ", "DK", "DJ", "DM", "DO", "TP", "EC", "EG", "SV", "GQ", "ER",
 "EE", "ET", "FK", "FO", "FJ", "FI", "FR", "GF", "PF", "TF", "GA", "GM", "GE", "DE", "GH", "GI", "GR",
 "GL", "GD", "GP", "GU", "GT", "GN", "GW", "GY", "HT", "HM", "HN", "HK", "HU", "IS", "IN", "ID", "IR",
 "IQ", "IE", "IL", "IT", "JM", "JP", "JO", "KZ", "KE", "KI", "KR", "KP", "KW", "KG", "LA", "LV", "LB",
 "LS", "LR", "LY", "LI", "LT", "LU", "MO", "MK", "MG", "MW", "MY", "MV", "ML", "MT", "MH", "MQ", "MR",
 "MU", "YT", "MX", "FM", "MD", "MC", "MN", "MS", "MA", "MZ", "MM", "NA", "NR", "NP", "AN", "NL", "NC",
 "NZ", "NI", "NE", "NG", "NU", "NF", "MP", "NO", "OM", "PK", "PW", "PA", "PG", "PY", "PE", "PH", "PN",
 "PL", "PT", "PR", "QA", "RE", "RO", "RU", "RW", "SH", "KN", "LC", "PM", "VC", "WS", "SM", "ST", "SA",
 "SN", "SC", "SL", "SG", "SK", "SI", "SB", "SO", "ZA", "GS", "ES", "LK", "SD", "SR", "SJ", "SZ", "SE",
 "CH", "SY", "TW", "TJ", "TZ", "TH", "TG", "TK", "TO", "TT", "TN", "TR", "TM", "TC", "TV", "UG", "UA",
 "AE", "UK", "US", "UM", "UY", "UZ", "VU", "VA", "VE", "VN", "VG", "VI", "WF", "YE", "YU", "ZM", "ZW")
</dropdown>

Finally, we'll ask participants to enter their postal code using a textbox:

<textbox zipcode>
/ caption = "Current Postal Code"
</textbox>

Note that Inquisit has a mask called "uszipcode" that constrains the input to be a valid United
States zip code (5 digit format, plus 4 optional). If we expect respondents from other countries,
however, we should leave off this constraint since postal codes throughout the world come in a
variety of formats.

3-Creating Survey Pages

Once you've de!ned the questions, the next step is to determine how to layout those questions
on the pages of the survey. Inquisit allows you break out questions into separate pages/screens.
Respondents can answer the questions on a single page and then click the "Next" button to
answer more questions on the next page. The survey can be con!gured to allow them to
navigate back to previous page and change their answers, or to allow forward only navigation.

Inquisit allows us to con!gure the font size of each question along with the spacing between
questions. By using small fonts and spacings, we could try to squeeze all of the questions onto a
single page. The result would look cramped, however, so we'll separate the questions into two
pages.

The !rst page is speci!ed here:

<surveypage demographics1>
/ caption = "Please answer the following demographic questions"
/ fontstyle = ("Verdana", -16, true, false, false, false, 5, 0)
/ questions = [1=sex; 2=age; 3=ethnicity; 4=race; 5=political; 6=occupation]
</surveypage>
The element type is surveypage, and the name of this page "demographics1". The caption
attribute tells Inquisit to display a simple instruction at the top of the page. The fontstyle
attribute speci!es the font in which caption appears, 14pt Verdana in bold. Finally, the questions
attribute lists the items that we de!ned previously that should be included on the page. In this
case, we've speci!ed six questions -- sex, age, ethnicity, race, political, and occupation --
presented in that order.

Now let's de!ne the second page:

<surveypage demographics2>
/ caption = "Please answer the following demographic questions (continued)"
/ fontstyle = ("Verdana", -16, true, false, false, false, 5, 0)
/ questions = [1=religion; 2=education; 3=citizenship; 4=residence; 5=zipcode]
</surveypage>
This page has a caption similar to the !rst page, although we've added "(continued)" to it. The
fonstyle is the same as the !rst page. This page presents the remaining 5 questions that we
previously created -- religion, education, citizenship, residence, and zipcode -- in that order.

That wasn't too painful.

4-Creating the Survey

Last but not least, we need to specify the order in which the pages are presented, along with
some other global settings. For this, we use the survey element:

<survey demographics>
/ pages = [1=demographics1; 2=demographics2]
/ responsefontstyle = ("Verdana", -12, false, false, false, false, 5, 0)
/ itemfontstyle = ("Verdana", -13, false, false, false, false, 5, 0)
/ itemspacing = 2%
/ showpagenumbers = false
</survey>
We've named our survey "demographics". The pages attribute speci!es which pages appear in
the survey and in what order. Our survey presents the surveypage called "demographics1"
followed by the surveypage called "demographics2".

The responsefontstyle attribute speci!es the font to use for response options in the survey. This
font applies to the choices in our multple choice items, and the text that the user types in the
textbox items.

The itemfontstyle attribute speci!es the font used for the captions of our survey questions.

The itemspacing attribute speci!es that the space between questions should be 2% of the height
of the screen.

The showpagenumbers attribute speci!es whether each page should be numbered. Since our
survey is only two pages, we'll turn off page numbering by setting this attribute to false.

That's it - our survey is complete. You can run the survey by selecting the "Run" command on
Inquisit's "Experiment" menu. Once you've completed the survey, the data will be recorded into
a !le called "demographics.dat". The name based on the name of the survey element. The data
!le will be located in the same folder as your script !le.

Inquisit How To's
How to Run an Experiment

There are several ways to run an Inquisit experiment.

Using Inquisit’s Menus

• Launch Inquisit from the Windows Start Menu.

• Select the Open command on Inquisit’s File menu.

• Choose the script !le you would like to run.

• Select the Run command on Inquisit’s Experiment menu.

• When prompted, enter a subject number and press the OK button.

Using Windows Explorer

• Find the script !le you would like to run in Windows Explorer.

• Double click on the script !le.

• When prompted, enter a subject number and press the OK button.
(You can also create shortcuts to Inquisit scripts, and launch the script by double clicking on the
shortcut icon.)

Using the Windows Commmand Prompt

For details on running Inquisit from a command prompt, see Running an Experiment from the
Command Line

Interrupting an Experiment or Block in Progress

While the experiment is running,

• Press Ctrl+b to skip the rest of the trials of the current block.

• Press Ctrl+q to immediately end the experiment.

http://www.millisecond.com/support/docs/v3/html/howto/howtocommandline.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtocommandline.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtocommandline.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtocommandline.htm

How to Run an Experiment from the Command Line

Inquisit allows you to launch an experiment using command lines. Command lines can be
entered, for example, using the Run option from the Windows Start Menu. Inquisit uses standard
Windows command line rules, but provides the additional option of specifying a subject
number.

The syntax for command lines is:

C:\>"inquisitpath" "scriptpath" subjectnumber monkey|human "password"
where the parameters are as follows:
inquisitpath
Quoted, fully quali!ed path to the Inquisit.exe !le. For example, "C:\Program Files\Millisecond
Software\Inquisit 3\Inquisit.exe".
scriptpath
Quoted, fully quali!ed path to the script !le to run. For example, "C:\My Scripts\script.exp".
subjectnumber
A positive integer specifying the subject number for this run.
monkey|human
If monkey is speci!ed, the automated monkey runs the script. Otherwise, if human is speci!ed,
the script runs in standard interactive mode.
password
Speci!es the password use to decrypt an encryptd script !le. The password must exactly match
the password given when the encrypted !le was saved.
Only the full path to Inquisit.exe is required, which alone will simply launch Inquisit.

If the full path to a script !le is included in the command, Inquisit is launched, the script !le is
opened, the user is prompted for a subject number, and the experiment begins.

If the subject number is also included in the command, Inquisit is launched and the script is run
using the speci!ed subject number. The subject number option is only valid when a script !le is
speci!ed.

How to Run Blocks, Trials, and Stimuli Using the object browser

The object browser lets you inspect elements of your experiment without having to run the
entire script. You can browse speci!c stimuli and run speci!c trials or blocks. The object browser
is a great tool for demonstrating tasks and methods in lectures and presentations, and provides
a convenient way to quickly test new elements.

To use the object browser:

1. Select the "Object Browser" command from the Tools menu.
2. On the object browser dialog, select the tab for the type of object - Page, Stimulus, Trial,

or Block - you would like to observe.
3. Select the speci!c instruction page, stimulus, trial, block you would like to observe from

the list.
4. Click the "Do" button.

How to Present Stimuli Provided by Subjects

Inquisit supports de!ning stimulus sets based on input provided by the subject. This feature can
be used, for example, to present text provided by the subject (e.g., the subject's stated name), or
to present only stimuli selected by the subject on previous trials.

Presenting text entered by the subject

To create a set of items consisting of text entered by the subject, !rst we'll de!ne an empty item
set to store the items:

<item responseitems>
</item>
Next, we'll create a survey page with textbox items for gathering the respondent's !rst and last
name:
<textbox !rstname>
/ caption = "Please enter your !rst name:"
</textbox>

<textbox lastname>
/ caption = "Please enter your last name:"
</textbox>

<surveypage page1>
/ questions = [1=!rstname; 2=lastname]
/ ontrialend = [item.responseitems.item = textbox.!rstname.response]
/ ontrialend = [item.responseitems.item = textbox.lastname.response]
</surveypage>
This is a survey page with two items allowing respondents to enter their !rst and last names. The
ontrialend attributes contain the commands that actually do the work of adding the names to
the responseitems set. The !rst ontrialend command adds a new item to responseitems by
setting the item property to the response for the !rstname question.

The second ontrialend command adds the last name in a similar fashion. Neither of these
commands changes or removes the items that are already in the responseitems item set - they
simply add new items. Using this technique, we can build up item sets of arbitrary length
containing user-supplied content.

If we later want to change the !rst name item to something else (e.g., a nickname), we could do
so using the following command:

<surveypage page2>
/ questions = [1=nickname]
/ ontrialend = [item.responseitems.item.1 = textbox.nickname.response]
</surveypage>
This time, the ontrialend command assigns the !rst item in the responseitems set to the middle
name. This time, the command includes the index number "1", which refers speci!cally to the
!rst item in the set. By specifying the index number, we can thus change item in that position. If
the index number is omitted as in the !rst example, a new item is added.

Stimulus elements can use the responseitems element the same way they would use other item
elements. For example:

<text responses>
/ txcolor = (0, 255, 0)
/ position = (25, 25)
/ items = responseitems
</text>
This text element presents the responseitems in the upper left corner of the screen in green.

Text items selected by the participant

In additional to allowing participants to type in new stimuli, it is also possible for them to choose
items from a predetermined list. Imagine we want to create an item set containing three cities
the participant has never visited. We'll store these items in an item set called "cities":

<item cities>
</item>
Next, we'll create a survey page with a checkboxes item with a list of cities for the participant to
choose from:

<checkboxes cities>
/ caption = "Select three of the cities below that you have never visited:"
/ options = ("Berlin", "London", "Tokyo", "Paris", "Rome", "Sydney", "New York")
/ range = (3, 3)
</checkboxes>

<surveypage page1>
/ questions = [1=cities]
/ ontr ialend = [i f (check boxes.cit ies.checked.1 == true) i tem.cit ies. i tem =
checkboxes.cities.option.1]
/ ontr ialend = [i f (check boxes.cit ies.checked.2 == true) i tem.cit ies. i tem =
checkboxes.cities.option.2]
/ ontr ialend = [i f (check boxes.cit ies.checked.3 == true) i tem.cit ies. i tem =
checkboxes.cities.option.3]
/ ontr ialend = [i f (check boxes.cit ies.checked.4 == true) i tem.cit ies. i tem =
checkboxes.cities.option.4]
/ ontr ialend = [i f (check boxes.cit ies.checked.5 == true) i tem.cit ies. i tem =
checkboxes.cities.option.5]
/ ontr ialend = [i f (check boxes.cit ies.checked.6 == true) i tem.cit ies. i tem =
checkboxes.cities.option.6]
/ ontr ialend = [i f (check boxes.cit ies.checked.7 == true) i tem.cit ies. i tem =
checkboxes.cities.option.7]
</surveypage>
The checkboxes item lists seven cities and uses the range attribute to constrain the number of
selections to 3. There are seven ontrialend commands, each of which evaluates whether its
corresponding city is checked, and if so, adds it to the cities item list. The items can then be
presented using a text element.

<text responses>
/ items = cities
</text>
Next, de!ne an item element whose items will consist of the picture or text items selected by the
subject on each run of the multiplechoice trial:

<item selecteditems>
/ items = (multiplechoice)
</item>
Each time a multiplechoice trial is run, Inqusit adds the item selected by the subject to the
selecteditems item set. If the multiplechoice trial presented pictures, the selecteditems item
element could be presented by picture elements in the script. If the multiplechoice trial
presented text, the selecteditem item element could be presented by text elements.

Picture items selected by the participant

We'll use the cities example again, but modify it to create an item set of pictures. Again, we'll
store these items in an item set called "cities":

<item cities>
</item>
Here is our checkboxes survey item with the list of cities. This time, we've added the optionvalues
attribute to de!ne, for each option, the name of the corresponding jpg !le containing a picture
of the city. The checkboxes item will still display the city names next to each the checkbox, not
the underlying optionsvalues.

<checkboxes cities>
/ caption = "Select three of the cities below that you have never visited:"
/ options = ("Berlin", "London", "Tokyo", "Paris", "Rome", "Sydney", "New York")
/ optionvalues = ("berlin.jpg", "london.jpg", "tokyo.jpg", "paris.jpg", "rome.jpg", "sydney.jpg",
"newyork.jpg")
/ range = (3, 3)
</checkboxes>
Finally, here is the surveypage that displays the checkboxes item:

<surveypage page1>
/ questions = [1=cities]
/ ontr ialend = [i f (check boxes.cit ies.checked.1 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.1]
/ ontr ialend = [i f (check boxes.cit ies.checked.2 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.2]
/ ontr ialend = [i f (check boxes.cit ies.checked.3 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.3]
/ ontr ialend = [i f (check boxes.cit ies.checked.4 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.4]
/ ontr ialend = [i f (check boxes.cit ies.checked.5 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.5]
/ ontr ialend = [i f (check boxes.cit ies.checked.6 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.6]
/ ontr ialend = [i f (check boxes.cit ies.checked.7 == true) i tem.cit ies. i tem =
checkboxes.cities.optionvalues.7]
</surveypage>
For each city listed in the checkboxes item, the corresponding ontrialend command evaluates
whether its checkbox is checked, and if so, adds the optionvalue (i.e., the picture !le name) to
item set. Now, we can create a picture element that will display these pictures:

<picture selectedcities>
/ items = cities
</picture>

One additional step is required to make this solution work. To maximize performance, Inquisit
loads all pictures !les used by a script at the very beginning as it parses the script. We therefore
we need to tell Inquisit that the script uses these !les, or it won't load them. We can do this by
creating a picture element that lists these !les as items. We won't actually use this element
anywhere in the script - it's just there so that Inquisit will load the pictures:

<picture dummy>
/ items = ("berlin.jpg", "london.jpg", "tokyo.jpg", "paris.jpg", "rome.jpg", "sydney.jpg",
"newyork.jpg")
</item>
There you have it.

How to Present Stimulus Pairs

Often an experiment will require presentation of stimulus pairs. For example, a lexical priming
task may have prime-target pairs such DOCTOR/NURSE that are meant to be presented together
on a given trial.

Stimulus pairs are de!ned in Inquisit by creating two stimulus elements for the !rst and second
members of each pair, then linking selection of the second with that of the !rst. For example:

<text !rstname>
/ items = ("BILL", "LINDON")
/ select = noreplace
</text>

<text lastname>
/ items = ("CLINTON", "JOHNSON")
/ select = current(!rstname)
</text>
For !rstname, select = noreplace means that whenever !rstname is presented, it randomly
selects without replacement which speci!c item is shown. For lastname, select =
current(!rstname) indicates that whenever a lastname is presented, it selects the item
corresponding to the currently selected !rstname item.

The trial below presents both stimuli:

<trial person>
/ stimulustimes = [0 = !rstname; 100 = lastname]
/ response = anyresponse
</text>
On each run of this trial, BILL is always followed by CLINTON and LINDON is always followed by
JOHNSON.

How to Test an Experiment

Inquisit has a built in 'monkey' who will happily serve as a test subject for even your longest,
most tedious experiments. The monkey is useful for debugging and generating sample data. To
run the monkey:

a) Open the experiment script in Inquisit.

b) Select the "Monkey" command from the Tools menu.

c) Enter a subject number when prompted and then press OK.

Now, go enjoy a cup of coffee as the monkey runs through the entire experiment without so
much as a complaint. Consult your animal subjects ethics board to determine whether the
monkey's informed consent is required.

How to Interrupt an Experiment

While the experiment is running and waiting for a response,

• Press Ctrl+b to skip the rest of the trials of the current block.
• Press Ctrl+q to immediately end the experiment.

How to Audit Stimulus Presentation Times

Inquisit uses DirectX to present stimuli as rapidly as is possible using Windows. However, even
the most ingeniously architected, most efficient software can not guarantee accurate timing of
stimuli presentations on Windows every time. Alas, Windows was not designed to be a real time
operating system, and certain factors may potentially introduce anomalies into stimulus
presentation times.

For example, an experiment might present an unusually large number of high resolution, high
color images on a single trial, the combination of which exceeds display memory capacity. Or, a
high priority system thread may steal CPU cycles from Inquisit while it is in the middle of a
stimulus presentation sequence.

To be sure, the experimenter can minimize the chances of the former situation by making sure
the system has enough display memory to run her task paradigm. Furthermore, Inquisit
minimizes the chances that other programs, including Windows itself, will steal CPU cycles from
it by setting its process and threads to the highest priority level. It should also be noted that tests
of Inquisit on a variety of hardware con!gurations have shown that timing anomalies are
exceedingly rare. The point, however, is that on a system as complex as a Windows PC, it is
impossible to guarantee such anomalies will never occur.

For this reason, Inquisit includes self-auditing capabilities that allow the researcher to determine
when a stimulus was actually presented. The actual stimulus onset times may be recorded
directly into the data !le, where they can be casually inspected or incorporated into data
analysis, for example, as a criterion for discarding trials.

To record stimulus onset times, specify the "stimulusonset" keyword in the columns attribute of
the data element:

<data>
/ columns = [stimulusonset stimulusonset stimulusonset stimulusonset]
</data>
The above example writes the stimulus onset time, starting from the beginning of the stimulus
presentation sequence, of the !rst, second, third, and fourth stimulus presented on each trial of
the experiment. If less than four stimuli are presented on a given trial, a '0' is recorded for the
extras.

http://www.millisecond.com/support/docs/v3/html/language/attributes/columns.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/columns.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm

How to Erase Stimuli

By default, Inquisit erases all stimuli presented on a given trial after the subject has responded.
Note that you can prevent a stimulus from being erased at the end of a trial by setting its erase
attribute to false.

Some research tasks require that stimuli be presented for a !xed duration, after which it should
be removed from the screen. To erase a stimulus after a !xed duration, you must create a
separate 'blank' stimulus element and then present that blank at the appropriate interval in the
stimulus presentation sequence so that it overwrites the stimulus you wish to erase.

There are a number of ways to create a blank stimulus. The easiest is to create a rectangular
shape element, set its size large enough to cover the stimulus you wish to erase, and then set its
color to the background color of the screen.

If you are erasing text items of various sizes, it may make sense to de!ne a second text element
that uses the same set of items, sets the select attribute as linked with the to-be-erased stimulus,
but sets the txcolor and txbgcolor attributes to the background color of the screen. Each time
this blank text stimulus is presented, it will present a erasing rectangle that is exactly the same
size of the original text stimulus.

How to Analyze Recorded Voice Responses

Many reaction time tasks are best administered by requiring participants to make verbal
responses. Consider the classic Stroop task, for example, whereby the respondent is required to
identify the color of the ink in which color names are printed. Although it's possible to
demonstrate the Stroop effect using key or button presses, the effect is much more evident with
verbal responses. Unfortunately, analyzing the accuracy of verbal responses typically requires
the tedious and time-consuming process of transcribing hundreds or even thousands of
recorded vocalizations. Given the amount of labor involved, many researchers avoid verbal
response tasks altogether in favor of procedures that can be completely computer automated.

Inquisit removes the tedium of transcribing verbal responses by leveraging speech recognition
software. With Inquisit, spoken responses can be automatically analyzed in real time, or you can
record responses and then later analyze them with the speech engine.

To analyze the content of spoken responses in real time, simply set the inputdevice attribute to
speech.

http://www.millisecond.com/support/docs/v3/html/language/attributes/erase.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/erase.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/shape.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/shape.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/select.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/select.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/txcolor.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/txcolor.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/txbgcolor.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/txbgcolor.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/inputdevice.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/inputdevice.htm

With this option, Inquisit activates the speech engine on every voice trial, listens for a response,
and then attempts to identify the utterance from a list of possible responses that you specify. The
identi!ed response is recorded directly into the data !le. In cases where the response could not
be identi!ed, Inquisit records a "?" instead. The advantages of this option are that a) the
utterance is immediately available in the data !le for analysis, and b) Inquisit can determine
whether a correct or incorrect response was given for purposes of providing tracking
performance and providing error feedback. The disadvantages of speech option are that the
speech engine may occassionally misidentify or fail to recognize valid utterances. It also may
impose a perceptible delay between the time an utterance is made and the time it is recognized
(importantly, this delay does not affect the measurement of response latency of spoken
responses).

To record responses for subsequent speech recognition analysis, set the inputdevice attribute to
voicerecord. With this option, Inquisit listens for a response on every trial, and when it picks up
incoming sound, that sound is recorded to a wav !le. Separate wave !les are recorded for each
trial, and !les are named in a way that allows you to match the !le to the particular trial of the
particular session for the particular subject that made the response. When you are ready to
analyze the data, Inquisit provides a handy tool that "listens" to each wav !le, identi!es the
spoken content, and saves the results to a tab delimited !le.

The "Analyze Recorded Responses" Tool

To analyze the recorded responses, click Inquisit's Tools menu, and select the "Analyze Recorded
Responses..." command. This will open the following window:

http://www.millisecond.com/support/docs/v3/html/language/attributes/inputdevice.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/inputdevice.htm

First, you must specify the folder containing the recorded wav !les. You will !nd these !les in a
subfolder called "voicerecord" located in the folder containing your script !le.

Next, you can optionally specify the complete list of valid utterances so that the engine knows
what words to listen for. If your task has a !xed set of valid responses, specifying them here will
greatly improve the recognition accuracy of the engine. If you do not specify valid responses, the
engine treats the entire lexicon as a potentially valid response, and recognition accuracy suffers
accordingly.

To start the analysis, click the Analyze button. Once all the !les have been analyzed, each wav !le
and its recognition result appear in the list below. If the engine could not identify the response, a
"?" appears. To listen to any of the wav !les, simply double-click the !le in the results list and it
will play (make sure audio is con!gured correctly, speakers are turned on, and the volume is
turned up). By listening to the !les, you can double-check the engine's accuracy or try to identify
an utterance that the engine could not.

Finally, you can save the results to a tab-delimited !le by clicking the "Save..." button. The !le will
contain two columns of data for the !le name and recognition result respectively. The saved data
can then be inserted into the main data !le using the command language and macros of your
stats software, or using good old fashioned Filter, Sort, Copy, and Paste with a spreadsheet
program like Excel.

How to Adjust the Response Window

The temporal characteristics of the response window may be adjusted from block to block
depending on a given subject’s performance. The way the script speci!es the response window
method also determines the adjustment procedure.

The default window adjustment procedure is:

The response window is moved back 33 ms for subsequent blocks if

a. the percent of correct responses for the block <= 55%.

b. the percent of correct responses for the block <= 65% and mean latency is over 100 ms
greater than the current window center.

The response window is moved forward 33 ms for subsequent blocks if

a. the percent of correct responses for the block >= 80% and mean latency is no more than
100 ms greater than the current window center.

Using the <response> element, it is possible to customize various aspects of the window
adjustment procedure, including conditions for incrementing the window center (moving it
back), conditions for decrementing the window center (moving it forward), the increment and
decrement amounts, the minimum and maximum window center values, and whether to base
the adjustment algorithm on mean or median latency.

http://www.millisecond.com/support/docs/v3/html/language/attributes/rwinccondition.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwinccondition.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwdeccondition.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwdeccondition.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwincunit.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwincunit.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwdecunit.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwdecunit.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwmincenter.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwmincenter.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwmaxcenter.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwmaxcenter.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwlatencymetric.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/rwlatencymetric.htm

Response Window for Blocks

The response window procedure can be speci!ed at the block level, as in the following:

<block myblock>
/ responsemode = window(100, 100, windowstim)
</block>
In this example, adjustment of the window center for myblock is independent of the subject’s
performance on different blocks de!ned in the script. Each adjustment to the response window
of myblock affects only subsequent runs of myblock and is unaffected by performance on blocks
with other names.

Response Window for Expt

The response window procedure can be speci!ed at the expt level, as in the following:

<expt>
/ responsemode = window(100, 100, windowstim)
</expt>
In this case, the scope of the window center is the experiment. All blocks within the experiment
will share the experiment’s window center, with the exception of blocks that have the response
window explicitly de!ned for themselves (see above). Each block that uses the shared
experiment window center may adjust that center based on the subject’s performance, and
subsequent blocks in the experiment will use the adjusted window center.

Response Window for the Response Element

The response window procedure can also be speci!ed within a response element, as in the
following:

<response myresponse>
/ mode = window
/ rwhitduration = 200
/ rwhitstimulus = hitstim
/ rwcenter = 400
/ rwwidth = 300
/ rwstimulus = windstim
</response>
In this case, the myresponse element has its own response window center, and all block or expt
elements that specify “/response = myresponse” will share that window center.

This window center may be adjusted based on performance of any block that uses myresponse,
and the adjusted window center will be used by subsequent blocks that use myresponse.

How to Control Response Timing

By default, Inquisit measures response latency as the interval beginning at the onset of the last
stimlus frame of the trial and ending when the subject issues a valid response. Responses made
before the onset of the last stimulus frame are ignored.

The beginning of the response interval can be customized using the responsetime or
responseframe attributes. Responsetime speci!es how many milliseconds after the onset of the
!rst frame the response interval should begin. Responseframe speci!es how many frames after
the !rst frame the response interval should begin.

For example, in the following trial, the response interval begins when the !rst stimulus, "prime",
is presented.

<trial mytrial>
/ stimulusframes=[1=prime; 10=target]
/ responseframe=1
</trial>

http://www.millisecond.com/support/docs/v3/html/language/attributes/responsetime.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/responsetime.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/responseframe.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/responseframe.htm

How to Control Trial Duration and Inter-Trial Intervals

Inquisit provides a number of commands for controlling the timing of various segments of a trial.
A trial can be thought of as a sequence of four segments, illustrated in the following diagram:

Attributes

pretrialpause
Pauses for the speci!ed duration at the begining of a trial, prior to stimulus presentation. In
addition to providing a general means of controlling inter-trial intervals, the PretrialPause is
useful for experiments that present large numbers of memory intensive stimuli on a given trial.
Depending on the size of the stimuli and the speed of the hardware, stimulus preparation may
add notable lengths of time to the beginning of the trial. Furthermore, stimulus preparation time
may vary from trial to trial, in which case varying durations may be added to the beginning of
the trials. However, if a PretrialPause interval is speci!ed, Inquisit uses this time to prepare the
stimulus presentation sequence. By specifying a PretrialPause duration long enough for stimulus
preparation to complete, the experimenter can impose a constant and predictable duration at
the beginning of each trial.
numframes
Speci!es the number of stimulus presentations frames. A frame corresponds to a single vertical
retrace interval of a CRT monitor.

http://www.millisecond.com/support/docs/v3/html/language/attributes/pretrialpause.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/pretrialpause.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/numframes.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/numframes.htm

response
By setting this attribute to a timeout procedure (e.g., /response = timeout(1000)), it speci!es the
maximum duration for Inquisit to wait for the subject to respond. If no response occurs during
within this duration, Inquisit !nishes up the trial, waits for the postrialpause to complete, and
moves onto the next.
timeout
Speci!es the maximum duration of a trial, from the very beginning of the trial to the end, not
including the posttrialpause.
posttrialpause
Pauses for the speci!ed duration at the end of each trial after the subject has responded. In
addition to providing a general means of controlling inter-trial intervals, the PosttrialPause is
useful for experiments that present large numbers of memory intensive stimuli on a given trial.
Depending on the size of the stimuli and the speed of the hardware, the process of cleaning up a
stimulus presentation sequence (i.e., removing stimuli from memory) may add notable lengths
of time to the end of the trial. Furthermore, stimulus cleanup time may vary from trial to trial, in
which case varying durations may be added to the ends of the trials. However, if a PosttrialPause
interval is speci!ed, Inquisit uses this time to cleanup the stimulus presentation sequence. By
specifying a PosttrialPause duration long enough for stimulus cleanup to complete, the
experimenter can impose a constant and predictable duration at the end of each trial.
trialduration
Speci!es the absolute duration of a trial, from beginning to end, including the posttrialpause. If
the subject responds quickly, the posttrialpause interval is lengthened to !ll out the remaining
time in the duration. If the subject does not respond before the duration, the trial is terminated
and the next trial begins.

How to Setup and Use Setup Speech Recognition

Inquisit leverages the Microsoft Speech Recognition Engine to allow measurement of both
latency and accuracy of spoken responses. To use Inquisit’s speech recognition capabilities, you
must install version 4.0 of the Microsoft Speech Recognition Engine and and Speech API. If you
have not already installed these components, you may do so here. Simply click on each link
below and when prompted choose the option to "Run this program from its current location ".

1. Install the Microsoft Speech API
2. Install the Microsoft Speech Recognition Engine

http://www.millisecond.com/support/docs/v3/html/language/attributes/response.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/response.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/timeout.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/timeout.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/posttrialpause.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/posttrialpause.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/trialduration.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/trialduration.htm
http://www.millisecond.com/redist/spchapi.exe
http://www.millisecond.com/redist/spchapi.exe
http://www.millisecond.com/redist/mscsrgpcl.exe
http://www.millisecond.com/redist/mscsrgpcl.exe

The speech recognition functionality also requires that you have a sound card and a
microphone. Almost any sound card will work for speech recognition and text-to-speech,
including Sound Blaster™, Media Vision™, ESS Technology, cards that are compatible with the
Microsoft® Windows Sound System, and the audio hardware built into multimedia computers.
The quality of the microphone is a large determinant of speech recognition accuracy. Use a
close-talk or headset microphone that is held close to the mouth or a medium-distance
microphone that rests on the computer 30 to 60 centimeters away from the speaker. A headset
microphone is needed for noisy environments. Speech recognition works best with close-talk
microphones.

Before speech recognition will work, you must run the Microphone Wizard to adjust microphone
input to appropriate levels. To run the Microphone Wizard, go to the Tools menu in Inquisit,
select Speech Recognition, and then select Microphone Wizard.

How to Present TTL Signals Through the Parallel Port

Inquisit can trigger external devices such as EEG's and pidgeon feeders by sending these devices
TTL (Transistor-Transistor Logic) signals through the computer's LPT (parallel) port. Inquisit
allows precise control over the the duration and state of the signals, as well as syncronization of
signals with visual and audio stimuli presented on a trial.

A TTL signal is a simple 8 bit value that is physically represented as the sequence of high and low
voltage states in pins 2 through 9 of the parallel port at a given point in time.

In Inquisit's scripting language, parallel port signals are de!ned and presented much the same
way as visual and audio stimuli. as the signal is represented as an 8 character sequence of 0's and
1's, with 0 corresponding to low and 1 corresponding to high. Port signals are de!ned within
Inquisit using the port element, which can contain 1 or more items that de!ne a speci!c 8-bit
sequence. For example, the following port stimulus consists of a single 8 bit sequence
"10101010":

<port mysignal>
/ port = lpt1
/ subport = data
/ items = ("10101010")
</port>

http://www.millisecond.com/support/docs/v3/html/language/elements/port.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/port.htm

The port attribute speci!es which of the two parallel ports to use, LPT1 or LPT2.

The subport attribute speci!es whether to use the Data or Control register of the parallel port.

The items attribute speci!es a sequene of 8 bits to send to the port.

This port signal can then be presented along with other trial stimuli:

<trial mytrial>
...
/ stimulusframes = [1 = mypicture, mysignal]

< BR
 > ...
</trial>
The standard parallel port consists of three registers or 'subports' commonly referred to as Data,
Status and Control registers. The Data and Control registers are capable of sending output
signals. Inquisit supports writing to either the Data and Control registers by de!ning the subport
attribute of the port element. The Status register, on the other hand, supports input signals.
Inquisit supports reading from Status register (see ?? for details).

TTL signals are speci!ed as a sequence of 8 bits (i.e., a byte of information). The following charts
show the mappings between each binary digit speci!ed in the item (e.g., "01001001"), the bit,
and their respective DB25 pins for signals send to the Data and Control registers, respectively:

http://www.millisecond.com/support/docs/v3/html/language/attributes/port.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/port.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/subport.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/subport.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/items.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/items.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/subport.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/subport.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/port.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/port.htm

Inquisit's parallel port triggering is a generic mechanism for sending any 8-bit TTL signal to any
external device capable of receiving. The duration and content of the signals sent by an
experiment depends upon the speci!c device that is listening for those signals. Consult the
documentation for your device to understand what kind of signals it expects.

Inquisit includes a parallel port monitoring tool that allows ad hoc sending of TTL signals to the
Data and Control registers of either of two parallel ports (LPT1 or LPT2).

Inquisit can also read signals from the parallel port sent from other devices using the
pretrialsignal and posttrialsignal commands.

How to Use the Parallel Port Monitor Tool

The Parallel Port Monitor tool can be launched by selecting the "Parallel Port Monitor..."
command from Inquisit's "Tool" menu.

The Parallel Port Monitor tool allows you to send TTL signals through the parallel port of your
choice, as well as monitor incoming TTL signals send from external devices. The parallel port can
be useful for testing what kinds of TTL signals are sent or recognized by external devices such as
EEGs ampli!ers.

Inquisit recognizes TTL input to the Status register. When the "Receive" button is pressed, the
Parallel Port Monitor tool displays both the byte value of the current input TTL signal as well as
the high/low status of each individual pin. A checked box indicates high; unchecked indicates
low.

Inquisit can send TTL input to the Data or Control registers. To send a signal, check the box for
pin that should be high, then press the "Send" button. The corresponding pins will be set high or
low and will remain in that state until another signal is sent.

http://www.millisecond.com/support/docs/v3/html/howto/howtoportmonitor.htm
http://www.millisecond.com/support/docs/v3/html/howto/howtoportmonitor.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/pretrialsignal.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/pretrialsignal.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/posttrialsignal.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/posttrialsignal.htm

Con!guring a Cedrus RB-series Response Box to Work with
Inquisit

Inquisit supports obtaining and measuring responses from Cedrus RB-series response boxes.
This article describes how to con!gure your response box and port for use with Inquisit.

Inquisit RB-x20 Response Boxes (RB-420, RB-520, RB-620, and RB-820)

The RB-x20 devices are the second generation of response boxes from Cedrus. These response
boxes support only the "RB Series" communication mode.

Setting the Dipswitches

The dipswitches on the back of the response box control, among other things, the baudrate that
the device uses to signal the serial port. When the box is shipped, all four switches on the device
are down by default, which corresponds to a baud rate of 19200 (see the image below).
Although Inquisit supports any baud rate, we'll just use the default setting of 19200 to keep
things simple. If the switches are not all in the down position, unplug your device from the
computer, "ip them all down, and then plug it back in.

Con!guring the Serial Port

Once all four dipswitches have been set to the down position, the serial port must be con!gured
with the compatible settings. To con!gure the port, use the Windows Device Manager applet (on
Windows XP, open the Control Panel, then the System applet, click on the Hardware tab, and
click the Device Manager button). Expand the Ports node on the tree, right click on the COM port
that your response box is plugged into, and select the Properties command. This will open the
window pictured below, which allows you to con!gure the port. For the RB-x20 devices with the
dipswitches in the down position, the port should set to the following:

If you haven't already, plug your device into the serial port of you computer. If your computer
has multiple serial ports (COM1, COM2, etc.), make sure that you connect the device to the same
port that you con!gured in the previous step.

Testing with Inquisit

To test Inquisit with your response, download and run the RB Mode Sample script from Inquisit
Samples Page. You can use this script to determine whether Inquisit is able to detect key presses,
and what value is associated with each of the keys. This script works for both RB-x20 and RB-x30
devices.

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/

Inquisit RB-x30 Response Boxes (RB-430, RB-530, RB-630, and
RB-830)

The RB-x30 devices are the third and, as of the time this article was written, latest generation of
response boxes from Cedrus. These response boxes support two modes of communication, the
classic "RB Series" mode as well as the new XID mode. Either mode can be used with Inquisit. In
XID mode, Inquisit uses the response box's built-in timer to determine response latencies. In
theory, the response box's timer should be more reliable than the computer's CPU given that
Windows allows other applications to take control of the CPU, although in practice, our testing
has found little if any difference between response latencies measured in RB and XID mode.

The !rst step in using the response device is to plug it into a USB port on your computer and
install the device driver (which you can download from Cedrus' web site).

XID Mode

XID Mode: Setting the Dipswitches

The dipswitches on the back of the response box control the response mode and baudrate that
the device uses to signal the serial port. When the response box is shipped, all four switches on
the device are down by default, which sets the device to XID mode at a baud rate of 115,200. See
below for an illustration. Although Inquisit can use any baud rates supported by the device, we'll
just use with the default setting of 115,200 for the sake of simplicity. If the dipswitches are in
different positions, unplug the response box, return them all to the down position, then plug it
back in. Be warned, you must disconnect your response box from the computer and then
reconnect it for dipswitch changes to take effect.

XID Mode: Con!guring the Serial Port

Once all four dipswitches have been set to the down position, we must make sure the serial port
is con!gured to with the correct settings. To check the settings, use the Windows Device
Manager applet (on Windows XP, open the Control Panel, then the System applet, click on the
Hardware tab, and click the Device Manager button).

Expand the Ports node on the tree, right click on the port labeled "Cedrus RB-x30 Response Pad",
and select the Properties command. (If you don't see this port in the tree, you need to install the
device driver supplied by Cedrus.) This will open the window pictured below. Make sure the
settings are as indicated below. (These are the defaults, so unless you've changed them, they
should be.)

XID Mode: Testing with Inquisit

To test Inquisit with your response box in XID mode, download and run the XID Mode Sample
script from Inquisit Samples Page. You can use this script to determine whether Inquisit is able to
detect key presses, and what value is associated with each of the keys.

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/

RB Mode

RB Mode: Setting the Dipswitches

The dipswitches on the back of the response box control the mode and baudrate that the device
uses to signal the serial port. Unplug the response box from the computer, and set dipswitches 1
and 2 to the up position, and 3 and 4 to the down position. Be warned, you must disconnect your
response box from the computer and then reconnect it for the changes to take effect. This will
con!gure the device to use RB mode at a baud rate of 19200. Although Inquisit can use any baud
rates supported by the device, 19200 is a perfectly respectable baud rate so we'll just stick with it
to keep things simple.

RB Mode: Con!guring the Serial Port

Once the dipswitches have been set to the proper position, the serial port must be con!gured
with the appropriate settings. To check the settings, use the Windows Device Manager applet
(on Windows XP, open the Control Panel, then the System applet, click on the Hardware tab, and
click the Device Manager button). Expand the Ports node on the tree, right click on the port
labeled "Cedrus RB-x30 Response Pad", and select the Properties command. (If you don't see this
port in the tree, you need to install the device driver supplied by Cedrus.) This will open the
window pictured below. Make sure the settings are as indicated below:

RB Mode: Testing with Inquisit

To test Inquisit with your response box in RB mode, download and run the RB Mode Sample
script from Inquisit Samples Page. You can use this script to determine whether Inquisit is able to
detect key presses, and what value is associated with each of the keys. This script works for both
RB-x20 and RB-x30 devices.

Record Responses from a Serial Response Box

Inquisit supports obtaining and measuring responses from serial port devices such as serial
response boxes and voice key microphones (Inquisit also supports voice key and speech
recognition using any PC microphone). Inquisit has generic serial port cababilities that can be
used to interact with many devices. In addition, Inquisit also has special capabilities for
interacting with Cedrus' XID response boxes, which are described in detail below.

Con!guring the serial port

Most devices require the serial port to be con!gured with speci!c settings in order to function
properly. Settings include the port's baud rate, the number of bits in each chunk of data, parity,
and "ow control. Consult the manual for your device for the appropriate COM port settings.

To con!gure the port, use the Windows Device Manager applet (on Windows XP, open the
Control Panel, then the System applet, click on the Hardware tab, and click the Device Manager
button). Expand the Ports node on the tree, right click on the COM port you wish to con!gure,
and select the Properties command. This will open the following Window, which allows you to
con!gure the port. If you are using an RB x30 series device, the settings should be as follows:

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/

Note that the RB x30 series of response pads have a set of dip switches on the back that allow
you to con!gure the device to use a 9600 or 19200 baud rate. Be sure to set the "bits per second"
option in the above window to whichever of these two values the dip switches are con!gured to
use.

Inquisit commands for serial port input

The Inquisit commands for using a serial port device are very similar to those used for other
response devices such as a keyboard, mouse, or joystick. The inputdevice command should be
set to "com1", "com2", "com3", ... depending upon which port number the device is plugged into
on your PC. The inputdevice can both be set globally for all trials in an experiment by using the
<defaults> element:

<defaults>
/ inputdevice = com1
</defaults>
The inputdevice can also be set on a trial by trial basis as follows (trial settings override the
default settings):
<trial mytrial>
/ inputdevice = com2
/ validresponse = (128, 8)
/ correctresponse = (8)
</trial>
Next, de!ne the valid and correct responses for that trial. Inquisit treats each byte of data sent by
the device as a separate response whose values range from 0 to 255. Correct and valid responses
must therefore be an integer within this range. The exact value sent by a particular device, or by
a given button on a device, is determined by the device itself. To determine the value
corresponding to a particular response on a serial port device, consult the documentation for
that device, or run a series of trials with "responsemode=anyresponse". Under this mode, Inquisit
will treat any response from the device as valid and will record the value for each response in the
data !le. You can then consult the data !le to determine the value for each response.

Using Cedrus XID-compatible response boxes with Inquisit

Cedrus' new line of RB and Lumina response boxes include a built in timer that can be used to
measure response latencies. The response pad measures the participant's reaction using it's own
hardware and then reports a time stamped response to the computer. This capability is useful
when running computationally intensive trials such as video presentation that could affect the
computer's ability to provide accurate timing.

Taking advantage of an XID response box's on board timer is easy. There is no port con!guration
required. Just set the inputdevice command to "xid1", "xid2", "xid2", ... depending on which serial
port number the device is plugged into. That's all there is to it. Inquisit will now record response
latencies using the device's timer rather than that of the computer.

Using Current Design, Inc. fORP response devices with Inquisit

Inquisit is also compatible with fORP response devices by Current Design, Inc. These devices plug
in through a USB port and can be con!gured to register as a keyboard or joystick device. Inquisit
can thus interact with them as if they were a regular keyboard or joystick (i.e., by setting
inputdevice equal to "keyboard" or "joystick").

How to Run an Inquisit 3 Experiment on the Web

Inquisit 3 Web Edition allows you to launch your experiments directly from a web page. If you
have purchased a web license, you have the option of launching expeirments from your own
web site or from the millisecond.com web site. In either case, data are saved by default to the
millisecond.com data service where you can login and download the data !les.

If you haven't yet purchased a web license, you can still evaluate Inquisit 3 Web Edition by
setting up an experiment on your own web server. When evaluating Inquisit, you can launch and
run scripts as normal, but the data will not be saved.

 Click here for more information on registering Inquisit 3 Desktop Edition. Click here for more
information on registering Inquisit 3 Web Edition.

Publishing Inquisit scripts on millisecond.com

Hosting your scripts on millisecond.com is the easiest option for those without experience
creating and administering web sites. For those with basic web development skills, this option
also includes some support for customizing the launch web page and subject number
assignment method. To publish a script on millisecond.com:

http://www.millisecond.com/purchasedesktop.aspx
http://www.millisecond.com/purchasedesktop.aspx
http://www.millisecond.com/purchaseweb.aspx
http://www.millisecond.com/purchaseweb.aspx

1. Write and test your Inquisit script using the Inquisit 3 Desktop Edition editor and tools.
2. Open your web browser and navigate to the millisecond.com web site.
3. Select "My Account" from the menu and click the "Register Inquisit Web Scripts" menu

item. If you are not already logged into the site, you will be prompted for your user name
and password.

4. Under the "Register Web Scripts" section, click the "Register New Script" link. This will
launch the Inquisit Web Script Wizard

5. The !rst page of the wizard asks whether you wish to host the experiment on
millisecond.com or on your own web server. Select the millisecond.com option. The click
the "Browse..." button and select your script !le from your local computer. Click next once
you have speci!ed the script !le.

6. On the next page you can upload additional !les used by the script such as pictures and
video.

7. Next, select whether you wish to use Inquisit's automatically generated launch page or
your own custom web page. The subsequent steps in the wizard allow you specify the
title, instructions, and how subject id numbers should be generated and assigned to
subjects.

8. When you are done, click the Finish button. That's it, your experiment is now online. You
can browse to the launch page using the following url:

http://research.millisecond.com/[username]/[script!lename].web

where [username] is your user id and [script!lename] is the original !lename of your
script.

9. Click the "Start" link to launch your experiment.

Publishing Inquisit scripts on your own web server

Hosting experiments on your own server is an easy if you have access to a web server. To deploy
an Inquisit experiment to your web server, follow these steps:

1. Write and test your Inquisit script using the Inquisit 3 Desktop Edition editor and tools, or
download a script from the Inquisit Task Library .

2. Navigate to your web scripts page at http://www.millisecond.com/myaccount/
webscripts.aspx.

3. If the status of your web license is "pending", start your web license by clicking the "Start
Now" link.

4. Click the "Register New Script" link to launch the registration wizard and follow the steps
in the wizard.

5. On the !rst page of the wizard, select the option to host the experiment on your own
server, and enter the full url to the script !le on your server.

http://research.millisecond.com/%5Busername%5D/%5Bscriptfilename%5D.web
http://research.millisecond.com/%5Busername%5D/%5Bscriptfilename%5D.web
http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx

6. Continue through the wizard specifying the options you'd like for the launch page.
7. On the !nal Summary page of the wizard, click the "Download Launch Page" button and

save the html page to your computer. Then click the Finish button.
8. Upload your script !le and the launch page created above to the location on your web

server that you speci!ed when registering the script. If you script uses picture or other
media !les, be sure to upload those as well.

9. Direct participants to the launch web page to start the experiment.

How to Combine Multiple Data Files into a Single File

If you are saving unencrypted to a local folder, Inquisit saves all data to a single !le. However, if
you encrypt the data or save it to a remote server , Inquisit creates separate data !les for each
run of the script. In either case, you will likely need to combine data !les from multiple machines
or multiple subjects into a single !le for analysis.

You can combine multiple data !les into a single !le by selecting the "Open" command on
Inquisit's !le menu and multi-selecting all of the !les you wish to combine. Inquisit will open all
of the selected !les, appending them together. You can then select the "Save As" command on
Inquisit's File menu to save the combined data into a single !le.

How to do Conditional Branching with Inquisit

Inquisit provides several attributes that enable an experimental procedure to dynamically
change or adapt based on the subject's performance.

Branch Attribute

The most powerful attribute for conditional logic is the branch attribute. The branch attribute
can be de!ned at the level of the trial (including specialized trials such as likert, openended, and
namingtrial) or block. The attribute allows you to specify which trials or blocks to run next based
on performance. Branching is useful in a variety of circumstances:

• Repeating a task until the subject makes ten correct responses in a row.
• Running one of two tasks depending upon the median latency on a previous task.
• Running a minimum of 10 and a maximum of 50 trials in a block and moving onto the

next block if the average response latency rises above 1000 milliseconds.

http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/articles/dataweb.htm
http://www.millisecond.com/support/docs/v3/html/articles/dataweb.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/branch.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/branch.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/likert.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/likert.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/openended.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/openended.htm
http://www.millisecond.com/support/docs/v3/html/howto/..%5Clanguage%5Celements%5Cnamingtrial.htm
http://www.millisecond.com/support/docs/v3/html/howto/..%5Clanguage%5Celements%5Cnamingtrial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm

The syntax of the attribute is as follows:

/ branch = [if <boolean expression> then nextevent]

where <boolean expression> is an expression that evaluates to true or false, and nextevent is the
trial or block that should be run if the boolean expression is true. To specify that no branching
should occur if a particular condition is true, "0" can be speci!ed as the next event.

Multiple branches may be de!ned for a given element. If the conditions of multiple branches are
true, then the !rst branch in the list wins.

Skip Attribute

Another useful attribute for conditional logic is the skip attribute. Like the branch attribute, skip
can be de!ned at the level of . The attribute allows you to specify conditions under which which
the trial or block should be skipped. The syntax of the attribute is as follows:

/ skip = [<boolean expression>]

where <boolean expression> is an expression that evaluates to true or false. Multiple skip
conditions may be de!ned for a given element. If any of the skip conditions of are true, this
event is skipped. Otherwise, it runs as normal.

Responsetrial Attribute

The responsetrial attribute provides a convenient way to chain together trials based on which
response the subject made. For example:

• Following up incorrect responses with a study trial.
• Creating a questionnaire that includes follow up questions only if a particular response is

given.
Note that with Inquisit 3, the branch attribute includes all of the functionality of the
responsetrial, and also includes functionality not supported by responsetrial.

Stop Attribute

The stop attribute aborts the remainder of the trials in a block if the subject's peformance meets
the speci!ed condition. This is useful in a variety of situations:

• Aborting a task if the percentage of correct responses drops below a threshold.
• Aborting a task if an incorrect response is given.
• Aborting a task after a maximum number of trials has been run.

http://www.millisecond.com/support/docs/v3/html/language/express.htm
http://www.millisecond.com/support/docs/v3/html/language/express.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/skip.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/skip.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/trial.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/block.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/responsetrial.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/responsetrial.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/stop.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/stop.htm

Running Sequences of Inquisit Scripts and Other Applications

A single experiment does not necessarily !t into a single Inquisit script. In many cases it may be
necessary to collect data using a combination of different Inquisit scripts, or even a combination
of different data collection programs. Ideally, the different scripts and programs would run as a
single, seamless sequence of tasks requiring no manual intervention from the researcher. This
article discusses approaches to achieve this.

Using the Inquisit Batch Element

The Inquisit language provides a simple facility for stringing together multiple scripts into a
single data collection session, the batch element. The batch element allows you to specify a list
of script !les to run in order.

<batch>
/ !le="snowboard.exp"
/ !le="ski.exp"
/ !le="snowshoe.exp"
</batch>
The batch element must be de!ned in its own seperate !le. To run the batch element, simply
open the script containing the batch element de!nition in Inquisit and run it as you would run
any other script.

This is a very simple approach, but it is also somewhat limited. The batch provides no way to
launch other programs besides Inquisit, and it does not allow you to counterbalance the order in
which the scripts are run. For that, we can rely on Windows batch !les.

Using Windows Batch Files

Most researchers assume that running a sequence of data collection programs together requires
the ability of the data collection software to launch other software applications. The applications
can thus be daisy-chained together, with each application launching the next application in the
sequence. In fact, this capability isn't really necessary at all. Everything you need to run batches
of applications in sequence is built directly into the Windows operating system.

Those of you who remember the days of Microsoft DOS are probably familiar with batch !les.
Batch !les are simple text !les, usually named with the "*.bat" !le extension, that contain a series
of shell commands. Shell commands can move, copy, and delete !les and folders. They can
search for !les by name or that contain a particular string of text. They can format a hard drive.
Most importantly for our purposes, however, they can launch applications.

http://www.millisecond.com/support/docs/v3/html/language/elements/batch.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/batch.htm

Creating a batch !le

Creating a batch !le is simple:

1. Click the Windows Start button in the lower left corner, and select "My Computer".
2. Navigate to the C: hard drive by double clicking its icon.
3. Open the "File" menu, select the "New" command, and then select "Text Document".
4. Now, rename the text !le you created to "millisecond.bat". Click "OK" when Windows asks

you to con!rm that the name change.
5. Right click the millisecond.bat !le and select the "Edit" command. This will open the !le in

the Notepad text editor.
Now we're ready to enter in some commands. For the sake of example, let's assume that our
experiment consists of two Inquisit scripts called "Snowboard.exp" and "Ski.exp". We'd like to run
the "Snowboard.exp" script !rst, then have the subject play a game of Solitaire to serve as a
distractor task before running the "Ski.exp" scrip. To launch the "Snowboard.exp" Inquisit script,
we use the same syntax that we would use to launch the script from the Windows command line
shell (hence, the name "shell commands"). The Inquisit.exe program accepts 2 command line
parameters that specify the script to run and the subject number to use. Thus, the !rst command
in the batch !le is the following:

"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" 23
The !rst part of the command is the full path to the Inquisit executable !le (yours may be
different depending on where you installed Inquisit). The second part speci!es the full path of
the script to run. The third part is the subject number (more on this later). Now, on the second
line of the !le we'll add the command for launching the Windows Solitaire application, which
changes our batch !le to the following:

"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" 23
"C:\Windows\System32\sol.exe"
Finally, we'll add a third line to the !le to run the "Ski.exp" Inquisit script.

"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" 23
"C:\Windows\System32\sol.exe"
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Ski.exp" 23
Our batch !le is almost complete. We can run the !le either by double clicking the !le with the
mouse, or by opening the Windows command line, moving to our desktop directory, and typing
"millisecond.bat". The batch !le !rst runs "Snowboard.exp". When that script is complete, it opens
the Windows Solitaire application. When Solitaire is closed, it runs the "Ski.exp" script in Inquisit.
In both cases, it sets the subject number to "23".

Wait a minute, you may be thinking, won't this batch !le set assign "23" to all of my subjects? The
answer is yes. Obviously, that's not very useful as we'll need the ability to specify a unique
subject number for each participant. Fortunately, this isn't difficult because Windows allows you
to pass command line parameters to batch !les as well. In our case, we'll want to pass the subject
number to the batch !le, and have it apply that number to both Inquisit scripts. We can do that
by modifying the batch !le as follows:

"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" %1
"C:\Windows\System32\sol.exe"
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Ski.exp" %1
All we've done is replaced "23" with "%1". Windows will substitute the value of the !rst command
line parameter passed to the batch !le wherever it see's a "%1". (All occurences of "%2" would be
replaced by the second parameter, "%3" by the third parameter, and so forth).

We've now got a batch !le that will run the three pieces of our experiment in sequence, but what
if we want to counterbalance the order of our Inquisit scripts? No problem, we'll just add some
additional logic to our batch !le. Our batch !le is going to need a second command line
parameter that tells us the order to run the Inquisit's scripts and an "IF" statement to select the
correct order.

IF "%2" == "A" (
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" %1
"C:\Windows\System32\sol.exe"
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Ski.exp" %1
)
IF "%2" == "B" (
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Ski.exp" %1
"C:\Windows\System32\sol.exe"
"C:\Program Files\Millisecond Software\Inquisit 3\Inquisit.exe" "C:\Myscripts\Snowboard.exp" %1
)
Now our batch !le takes two command line paramters, the !rst is the subject number and the
second (either "A" or B") indicates which order to run. If the second parameter is neither "A" or "B",
neither condition is run.

Running the batch !le

Our batch !le is now !nished, so let's take a look at how to run it. We can no longer double click
the !le to run it, because the !le is expecting us to supply a subject number as a !rst parameter.
Instead, we'll launch the batch !le from the Windows command line shell. To open the command
shell, do the following:

1. Click the Windows Start button in the lower left corner of the screen.
2. Select the "Run..." command.
3. Enter "cmd" in the text input box, and click the "OK" button. This will open a command

line console window.
4. In the console window, type "cd c:\ " to navigate to the root folder of the C drive (if you

are using a different drive, then switch the drive letter).
5. To launch your batch !le, type "millisecond.bat 99 A". Note that 99 is the value of the the

subject number and A speci!es the !rst counterbalancing condition. To run the second
counterbalancing condition, you would type "millisecond.bat 99 B"

We now have a batch !le that allows us to run multiple Inquisit scripts in counterbalanced order,
as well as running a another software application, "Solitaire". To the participant, these different
pieces will seamlessly "ow together. Click here for the completed batch !le.

Batch !les are a powerful tool that can be used to automate many different aspects of data
collection, including automatically backing up data !les to another location when a session is
complete, preprocessing data, or even logging off of Windows after a script is complete to
prevent tampering (using the Windows "logoff.exe" program).

How to Combine Multiple Scripts

Often a study will involve administering multiple measures to each participant. For example, a
study might administer an IAT, a direct measure of attitude, and a demographic questionnaire, or
it may require that 2 different IAT tasks be administered. Inquisit places no constraints on the
number of measures that can included in a single script. However, for a number of reasons, it is
often more convenient for each measure to be de!ned in its own script. For example, putting all
of the measures in a single !le may result in a large and unwieldy script. Also, in many cases each
of the measures already exists as a separate script anyway.

Inquisit provides two mechanisms for combining different scripts into a single data collection
session, the <batch> element and the <include> element.

The <batch> Element

The batch element provides a simple way of running a set of scripts in sequence. To use the
batch element, create new empty script !le that will contain only the batch element de!nition
and no other commands:

http://www.millisecond.com/support/docs/v3/html/articles/millisecond.bat
http://www.millisecond.com/support/docs/v3/html/articles/millisecond.bat

<batch>
/ !le = "IAT1.exp"
/ !le = "IAT2.exp"
/ !le = "IAT3.exp"
</batch>
As you can see from this example, the batch element is really just a list of the script !les you wish
to run. In the above example, three IAT scripts are listed, IAT1.exp, IAT2.exp, and IAT3.exp. As you
might have guessed, the batch runs each of these scripts in the order they are listed. To run the
batch, simpy open the script !le that contains the batch element de!nition in Inquisit, and select
the Run command from the Experiment menu. You will be prompted for a subject id, after which
each script is run in sequence. Data from each script are saved in separate !les, and the same
subject id is used for each !le. To use the batch element with Inquisit Web Edition, simply
register the script containing the batch element, and then upload the other scripts to the web
server. With the web edition, the data are also saved in different !les using the same subject id.

The batch !le is very easy to use, but it does have some limitations. Most notably, there is
currently no built in way to randomize the order in which the scripts are run (this is true as of
version 3.0.2.0, but the feature is planned for a future release). If you are using the desktop
version of Inquisit, you can create multiple batch !les, each of which contains a different
ordering, and then randomly assign participants to one of those batch !les. With the web
edition, this technique would require you to register multiple batch scripts, each of which would
require a separate license. For web experiments requiring randomized ordering, the <include>
element described below is likely a better option.

The <include> Element

The include element provides a convenient way to "copy and paste" elements from one script
into another script without requiring you to go through the hastle of actually copying and
pasting. It therefore can serve as a useful tool for combining measures de!ned in separate
scripts, although typically the scripts will have to be modi!ed somewhat in order to combine
properly.

As an example, let's say we wish to run two IAT measures, randomly varying the order. We could
arbitrarily choose either IAT script and add the include element to it. However, in order to make it
easier to reuse this solution with other scripts (containing IATs or other measures), we'll start with
a new empty !le and then add our include de!nition to it:

<include>
/ !le = "IAT1.exp"
/ !le = "IAT2.exp"
</include>

In the above example, we've included two different scripts, IAT1.exp and IAT2.exp. The order in
which they are listed doesn't matter. Conceptually, we now have a single virtual script that
contains all of the element de!nitions contained in IAT1.exp and IAT2.exp. If you try to run the
script, however, you'll notice a whole bunch of errors. This is because both scripts use the same
names for elements. They also both include de!nitions of global elements such as <data>,
<defaults>, <values>, <variables>, and <expressions>, so Inquisit will report an error stating that
these elements have been de!ned more than once.

The !rst step in resolving these errors is to put a single copy of the global elements in our
include script, and remove these element de!nitions from both of the IAT scripts. The global
elements to add to our include script and remove from our IAT scripts are as follows:

<defaults>
/ fontstyle = ("Arial", 3.5%)
/ screencolor = (0,0,0)
/ txbgcolor = (0,0,0)
/ txcolor = (255, 255, 255)
/ minimumversion = "3.0.0.0"
</defaults>

<data>
/ columns = [date, time, subject, blockcode, blocknum, trialcode, trialnum, response, correct,
latency, stimulusnumber, stimulusitem, expressions.da, expressions.db, expressions.d]
</data>

<monkey>
/ latencydistribution = normal(500, 100)
/ percentcorrect = 90
</monkey>

<values>
/ sum1a = 0
/ sum2a = 0
/ sum1b = 0
/ sum2b = 0
/ n1a = 0
/ n2a = 0
/ n1b = 0
/ n2b = 0
/ ss1a = 0
/ ss2a = 0
/ ss1b = 0

/ ss2b = 0
/ magnitude = "unknown"
</values>

<expressions>
/ m1a = values.sum1a
/ values.n1a
/ m2a = values.sum2a
/ values.n2a
/ m1b = values.sum1b
/ values.n1b
/ m2b = values.sum2b
/ values.n2b
/ sd1a = sqrt((values.ss1a - (values.n1a * (expressions.m1a * expressions.m1a))) / (values.n1a - 1))
/ sd2a = sqrt((values.ss2a - (values.n2a * (expressions.m2a * expressions.m2a))) / (values.n2a - 1))
/ sd1b = sqrt((values.ss1b - (values.n1b * (expressions.m1b * expressions.m1b))) / (values.n1b -
1))
/ sd2b = sqrt((values.ss2b - (values.n2b * (expressions.m2b * expressions.m2b))) / (values.n2b -
1))
/ sda = sqrt((((values.n1a - 1) * (expressions.sd1a * expressions.sd1a) + (values.n2a - 1) *
(expressions.sd2a * expressions.sd2a)) + ((values.n1a + values.n2a) * ((expressions.m1a -
expressions.m2a) * (expressions.m1a - expressions.m2a)) / 4)) / (values.n1a + values.n2a - 1))
/ sdb = sqrt((((values.n1b - 1) * (expressions.sd1b * expressions.sd1b) + (values.n2b - 1) *
(expressions.sd2b * expressions.sd2b)) + ((values.n1b + values.n2b) * ((expressions.m1b -
expressions.m2b) * (expressions.m1b - expressions.m2b)) / 4)) / (values.n1b + values.n2b - 1))
/ da = (m2a - m1a) / expressions.sda / db = (m2b - m1b) / expressions.sdb
/ d = (expressions.da + expressions.db) / 2
/ preferred = "unknown"
/ notpreferred = "unknown"
</expressions>

The next step is to rename all of the blocks, trials, stimuli, and stimulus items in both IAT scripts
so that they are all unique. In our case, we'll simply add an "iat1" to beginning of all of the names
in the IAT1.exp script, and "iat2" to the beginning of all of the names in the IAT2.exp script. Thus,
the blocks named "targetcompatiblepractice" becomes "iat1targetcompatiblepractice" and
"iat2targetcompatiblepractice". The text stimulus named "instructions" becomes
"iat1instructions" and "iat2instructions". The trial named "iat1summary" and "iat2summary". And
so forth. Note that you will need to update the parts of each script that refer to these elements as
well. For example, iat1summary trial contains the command / stimulustimes = [0=summary],
which must be changed to / stimulustimes = [0=iat1summary].

The element responsible for running our IATs is the <expt>element, so we'll next need to remove
these element de!nitions from the IAT scripts and rewrite them in our include script so that they
run the blocks of each of our IATs. After we delete these elements from the IAT scripts, we'll add
the following element de!nition to the include scripts.

<expt>
/ subjects = (1 of 4)
/ blocks = [1=iat1targetcompatiblepractice; 2=iat1attributepractice; 3=iat1compatibletest1;
4=iat1compatibletestinstructions; 5=iat1compatibletest2; 6=iat1targetincompatiblepractice;
7=iat1incompatibletest1; 8=iat1incompatibletestinstructions; 9=iat1incompatibletest2;
10=iat1summar y ; 11=iat2targetcompatibleprac t ice ; 12=iat2attr ibuteprac t ice ;
13=iat2compatibletest1; 14=iat2compatibletestinstructions; 15=iat2compatibletest2;
1 6 = i a t 2 t a r g e t i n c o m p a t i b l e p r a c t i c e ; 1 7 = i a t 2 i n c o m p a t i b l e t e s t 1 ;
18=iat2incompatibletestinstructions; 19=iat2incompatibletest2; 20=iat2summary]
</expt>

The above experiment runs IAT1 !rst and IAT2 second. In both cases, the compatible parings are
applied before the incompatible parings.

The next expt element reverses the order of the IATs.

<expt>
/ subjects = (2 of 4)
/ blocks = [1=iat2targetcompatiblepractice; 2=iat2attributepractice; 3=iat2compatibletest1;
4=iat2compatibletestinstructions; 5=iat2compatibletest2; 6=iat2targetincompatiblepractice;
7=iat2incompatibletest1; 8=iat2incompatibletestinstructions; 9=iat2incompatibletest2;
10=iat2summar y ; 11=iat1targetcompatibleprac t ice ; 12=iat1attr ibuteprac t ice ;
13=iat1compatibletest1; 14=iat1compatibletestinstructions; 15=iat1compatibletest2;
1 6 = i a t 1 t a r g e t i n c o m p a t i b l e p r a c t i c e ; 1 7 = i a t 1 i n c o m p a t i b l e t e s t 1 ;
18=iat1incompatibletestinstructions; 19=iat1incompatibletest2; 20=iat1summary]
</expt>

The next expt element runs IAT1 !rst and IAT2 second, but incompatible pairings are used !rst,
and incompatible pairings second.

<expt>
/ subjects = (3 of 4)

/ blocks = [1=iat1targetincompatiblepractice; 2=iat1attributepractice; 3=iat1incompatibletest1;
4=iat1incompatibletestinstructions; 5=iat1inccompatibletest2; 6=iat1targetcompatiblepractice;
7=iat1compatibletest1; 8=iat1compatibletestinstructions; 9=iat1compatibletest2;
10=iat1summar y ; 11=iat2targetincompatiblepractice; 12=iat2attr ibutepractice;
13=iat2incompatibletest1; 14=iat2incompatibletestinstructions; 15=iat2incompatibletest2;
16=iat2targetcompatiblepractice; 17=iat2compatibletest1; 18=iat2compatibletestinstructions;
19=iat2compatibletest2; 20=iat2summary]
</expt>

Finally, the last expt element runs IAT2 !rst and IAT1 second, with incompatible pairings !rst, and
incompatible pairings second.

<expt>
/ subjects = (4 of 4)
/ blocks = [1=iat2targetincompatiblepractice; 2=iat2attributepractice; 3=iat2incompatibletest1;
4=iat2incompatibletestinstructions; 5=iat2inccompatibletest2; 6=iat2targetcompatiblepractice;
7=iat2compatibletest1; 8=iat2compatibletestinstructions; 9=iat2compatibletest2;
10=iat2summar y ; 11=iat1targetincompatiblepractice; 12=iat1attr ibutepractice;
13=iat1incompatibletest1; 14=iat1incompatibletestinstructions; 15=iat1incompatibletest2;
16=iat1targetcompatiblepractice; 17=iat1compatibletest1; 18=iat1compatibletestinstructions;
19=iat1compatibletest2; 20=iat1summary]
</expt>

Note the /subjects command in each <expt> element determines which conditions a participant
is assigned to based on the subject number. Subjects 1, 5, 9, 13, etc are assigned to the !rst expt
element, 2, 6, 10, 14, etc. to the second, 3, 7, 11, 15, etc. to the third, and 4, 8, 12, 16, etc. are
assigned to the fourth expt element.

To run the script with Inquisit Desktop Edition, simply open the script containing the include
element and select the Run command from the Experiment menu. To run it with Inquisit Web
Edition, register the script with the include element, and upoad the other two scripts to the
server.

Using an ASL Eye Tracker with Inquisit

Versions 3.0.4.0 and later of Inquisit include a module that enables X-DAT markers to be sent
from Inquisit to the eye tracker, and real time eye position data to be retrieved from the eye
tracker for use in Inquisit experiments.

Sending Markers from Inquisit to an ASL Eye Tracker

Inquisit can send XDAT markers to the Eye Tracker in order to notify it of events in an experiment
such as the onset of a stimulus or the moment at which a participant responds. The Eye Tracker
then records these values into the data stream so that they can be used to analyze the tracking
data. To send XDAT markers, follow these steps:

1. Using the parallel cable labeled “XDAT” supplied by ASL, connect the parallel port of your
Inquisit computer to the XDAT port on the back of Eye Tracker Control Unit.

2. Start the Eye Tracker.
3. To test your connection, start Inquisit, select the Tools menu, and select the “Parallel Port

Monitor” command. Using the port monitor tool, select the port that the XDAT cable is
plugged into, check all of the boxes in the Data section (pins 2-9), and click the Send
Button. The XDAT value reported by the Eye Tracker software should change to 255.

4. Open the sample script for “Sending Markers to ASL Eye Tracker” (this sample can be
downloaded from http://www.millisecond.com/download/samples/). Run the sample by
clicking on the “Experiment” menu and selecting the “Run” command. The script presents
a series of pictures and sends a unique marker value at the onset of each one.

Figure 1: Inquisit's Parallel Port Monitor

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/

Sending Data from an ASL Eye Tracker to Inquisit

Inquisit allows a response to be de!ned as when the participant’s gaze falls within one or more
prede!ned regions on the screen, such as the areas occupied by pictures, text, videos, or
arbitrary shapes. Both the region that the participant looks at and the latency of their gaze can
be recorded by Inquisit, reported back to the participant, and used to direct the branching and
"ow of the experiment.

The sample entitled “Retrieving Point of Gaze from ASL Eye Tracker” demonstrates how to use
gaze points in an Inquisit experiment. To run the sample, download it from the Inquisit samples
web page (http://www.millisecond.com/download/samples/) and follow these steps:

1. Set up and test serial connection between Eye Tracker Serial Out port and the Inquisit
computer as described in ASL SDK Appendix: Testing Serial Out Connection.

2. Open the sample experiment in the editor.
3. The sample script assumes that the serial out cable is plugged into the COM1, and the

XDAT cable is plugged into LPT1. It also assumes that head tracking is off. If you are using
different port numbers, you can change those values in the script by locating the
<eyetracker> element in the script (see !gure 2 below) and changing the numbers in the
following two lines:
/ comportnumber = “1”
/ lptportnumber = “1”

Figure 2: Eyetracker Element Example

4. Run the experiment by clicking the “Experiment” menu and selecting the “Run”
command.

5. Inquisit will present a 9-point calibration bitmap on the screen. While this screen is
displayed on the Inquisit computer, click the Set Target Points command on the Eye
Tracker computer and set each of the target points so that the eye tracker can accurately
map pixels on the Inquisit computer’s to Eye Tracker units. Press the space to bar to
continue.

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/
http://www.millisecond.com/support/docs/v3/html/language/elements/asleyetracker.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/asleyetracker.htm

6. Next, Inquisit will begin the process of calibrating the eye tracker to the participant’s eye.
To begin eye calibration, select the “Standard Calibration” command on the Eye Tracker
computer, and Inquisit will present the current calibration point. As the participant is
looking at the point, click the “Save Current Point” button and the next point will appear
on the presentation screen. When you are !nished calibrating, press the space bar on the
Inquisit computer.

7. Inquisit will then present a single dot in the upper left corner of the screen. Instruct the
participant to look at that point and press the space bar.

8. Inquisit will then present a single dot in the lower right corner of the screen. Instruct the
participant to press the space bar as they look at the dot.

9. Inquisit will then present instructions for running the demo. The demo shows how to
display a cursor on the screen at the current gaze point and report the current x and y
pixel coordinates.

See the Inquisit documentation for more information on con!guring the Eye Tracker and using
gaze points in Inquisit.

Sending Markers from Inquisit 2.0 to Eye Tracker

Although Inquisit 2.0 does not support the ASL Eye Tracker module, it is nevertheless possible to
send XDAT markers to the Eye Tracker using Inquisit’s generic parallel port signaling capabilities.
To send XDAT markers, follow these steps:

1. Using the parallel cable labeled “XDAT” supplied by ASL, connect the parallel port of your
Inquisit computer to the XDAT port on the back of Eye Tracker Control Unit.

2. Start the Eye Tracker.
3. To test your connection, start Inquisit, select the Tools menu, and select the “Parallel Port

Monitor” command. Using the port monitor tool, select the port that the XDAT cable is
plugged into, check all of the boxes in the Data section (pins 2-9), and click the Send
Button. The XDAT value reported by the Eye Tracker software should change to 255.

4. De!ne your port signals using Inquisit’s <port> element. The <port> element is just
another type of stimulus, similar to <picture>, <text>, <video>, and <sound>. As such,
port stimuli can be presented using the same syntax that other stimuli can be presented.

http://www.millisecond.com/support/docs/v3/html/language/elements/port.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/port.htm

How to Interoperate Inquisit Web Edition with Online Survey
Packages

For many research projects, it is desirable to use Inquisit's reaction time capabilities in
conjunction with online survey packages such as Survey Monkey, Unipark, Qualtrics, etc. This
scenario is quite common among Inquisit users, and we've put some features in place to make
the transition back and forth between Inquist and other packages as smooth as possible.

Integrating surveys and Inquisit measures into a seamless and coherent user experience for
participants is primary accomplished by automatically redirecting participants back and forth
between the different programs. Most survey packages allow you to forward participants to
another web site after they've completed part or all of the survey. You need only specify the
Inquisit launch page as your forwarding url, and your participants will be automatically
redirected to the Inquisit portion of the study when the survey is complete.

Similarly, Inquisit allows you to specify a "Finish Page", where it will redirect participants after
they've completed the Inquisit part of the experiment. Here you would specify the url to the
survey page where you want participants to go next. Having done this, Inquisit will
automatically send participants back to the survey once the reaction time task is complete.

Now the question is, how do you correlate the data from the survey with the Inquisit reaction
time data? And, if you are sending participants back to the survey web site after the Inquisit part,
how does the site know which participant this is? The answer is to create a unique subject id for
each participant, and share it between Inquisit and the survey so that both record it in the data
!le.

The way to do this is to have participants start in the survey, all of which will generate some sort
of unique id for participant. When the survey is !nished, the survey package will forward them to
the Inquisit launch page url, and it will append the participant id (and sometimes some other
data) to the url as query parameters. For the example, the forwarding url to the Inquisit page
might look like the following:

http://research.millisecond.com/sniffles/myexperiment.web?subjectnumber=134&phase=3

The url contains two parameters named "subjectnumber" and "phase", the values of which are
dynamically set by the survey package for each participant (to 134 and 3 in this example). The
"subjectnumber" parameter is a unique id, and "phase" is used by the survey package to
determine which phase of the survey to run next when the participant returns. We want to make
sure that a) Inquisit records this subject number in the data, and b) Inquisit forwards both
parameters back to the survey web site when !nished so the site knows which subject has
arrived and can pick up where it left off.

http://research.millisecond.com/sniffles/myexperiment.web?subjectnumber=134&phase=3
http://research.millisecond.com/sniffles/myexperiment.web?subjectnumber=134&phase=3

To use the subjectnumber, just run through the webscript registraion wizard. When asked how
to generate subject ids, select the "Query Parameter" option and specify the name of the
parameter (in this case, the name is "subjectnumber"). That's it, Inquisit will now extract this
subject number from the url and record it in the data !le.

When the Inquisit is !nished, it will automatically append all of these query parameters to the
Finish Page url so that the values are passed back to the survey package. Continuing with the
example above, if the !nish page is:

http://www.surveysrus.com/coolsurvey/part2.html

Inquisit will append the parameters onto it so the actual forwarding url is

http://www.surveysrus.com/coolsurvey/part2.html?subjectnumber=134&phase=3

Now the survey package can extract these values and pick up where it left off with this
participant.

You can specify the !nish page using the webscript registration wizard as well. Importantly, you
should just specify the base url here without the query parameters! Inquisit will dynamically
append the parameters onto the base url for you.

http://www.surveysrus.com/coolsurvey/part2.html
http://www.surveysrus.com/coolsurvey/part2.html
http://www.surveysrus.com/coolsurvey/part2.html?subjectnumber=134&phase=3
http://www.surveysrus.com/coolsurvey/part2.html?subjectnumber=134&phase=3

Introducing Inquisit 3 Web Edition
Inquisit 3 Web Edition (IWE) extends the power and "exibility of the Inquisit 3 experiment engine
to the web. With IWE, your experiments can be launched directly from a web page without
having to manually install Inquisit on the client machine. Data gathered from the web can be
saved back to a web site, ftp site, network share, or even an email address.

What are the bene!ts of Inquisit 3 Web Edition?

Unlimited client licenses. With IWE, Inquisit experiments can be run on an unlimited number of
client machines. This makes IWE an ideal tool for large scale data collection in laboratories, class
rooms, or over the Internet.

Easy web deployment. IWE allows you to launch your experiments directly from a web page. The
IWE engine is packaged both as an ActiveX control and a Mozilla Plugin that is automatically
downloaded by Internet Explorer and Mozilla browsers like Firefox and Netscape respectively.
Starting an experiment with IWE is as easy as browsing to a web page.

Power, "exibility, and accurate timing. The IWE engine affords the same power, "exibility, and
timing accuracy as the Inquisit desktop engine. How is that possible? Because the IWE engine is
the desktop engine. Literally. We’ve just repackaged it in a way that makes it easy to deploy over
the web.

Compatible with Inquisit 3 Desktop. Your Inquisit 3 scripts will run interchangeably between the
desktop and web engines. There is no need to maintain and test multiple versions of your scripts.

Free Inquisit 3 Desktop license included. Each web license you purchase includes a free desktop
license so that you can easily create and test your Inquisit scripts on your development machine
before deploying them to the web.

How does the Inquisit 3 Web Edition work?

Running a web experiment requires that you have access to a web server. There are two simple
steps for publishing your experiment. First, you must copy your Inquisit script to the web server
so that the IWE can download it. Then, you publish the web page that will be used to launch the
Inquisit experiment.

The launch page is just a standard html page where you can send your participants in order to
start the experiment. For an example of a complete Inquisit launch page, navigate to http://
www.millisecond.com/web/launch.aspx and use your browser's command for viewing the
source. The launch page is formatted so that you can adapt it to run your own script with a few
simple modi!cations. When the user browses to the launch page, the browser prompts the user
to install the control, which is then downloaded from millisecond.com. Next, the page uses
client-side javascript to call the RunScriptFile method on the IWE in order to launch the
experiment. The RunScriptFile method signature is as follows:

Inquisit.RunScriptFile(scriptpath, userid, subjectnumber, monkey, encryptionpassword);
The RunScriptFile method takes four parameters:

scriptpath
The URL where IWE can download the script.
userid
The userid of the account that has speci!ed the script as active.
subjectnumber
The subject number to use for this subject.
monkey
A boolean "ag indicating whether Inquisit should run in monkey mode for the purpose of
testing a script.
encryptionpassword
A string containing the password required to decrypt an encrypted script.
The following example runs a script on millisecond.com with subject number set to 1.

Inquisit.RunScriptFile(“http://www.millisecond.com/myscript.exp”, "myuserid", 1, false, "");
RunScriptFile will download and parse the script, and if there were no errors it creates a full
screen window and runs the script in the same fashion as the Inquisit desktop engine. Using
javascript, you can call this method when the page loads, when user clicks a button or types a
key, or when any other event is !red by IE. This gives you great "exibility in determining how the
experiment integrates with your web site.

How does licensing work with Inquisit 3 Web Edition?

Unlike Inquisit Desktop, IWE is not licensed based on the number of client computers that install
and run Inquisit experiments. In fact, an IWE license entitles you to run Inquisit experiments on
an unlimited number of client computers.

IWE licenses determine the number of experiments that can be run at a given point in time. An
IWE license entitles you to run a single web experiment (as de!ned by a single Inquisit script). If
you wish to run one web experiment at a time, you would only need a single IWE license. If you
wish to collect data for !ve different experiments in parallel, you would need !ve IWE licenses.

http://www.millisecond.com/web/launch.aspx
http://www.millisecond.com/web/launch.aspx
http://www.millisecond.com/web/launch.aspx
http://www.millisecond.com/web/launch.aspx
http://www.millisecond.com/myscript.exp
http://www.millisecond.com/myscript.exp

IWE enforces the licensing policy at run time by checking whether the script it has been
instructed to run is listed as an active script for the speci!ed user account. If the script is active,
the experiment runs as normal. If the script is not active, it can optionally be run, but no data will
be collected. In order to collect data with IWE, you must therefore register the URLs of your
active scripts using the Inquisit Web Script Manager web page. You may change your list of
active scripts as often as you’d like. However, the number of active scripts you may specify is
limited to the number of IWE licenses held by your account. Importantly, this means that IWE
must be able to connect to www.millisecond.com from the client computer in order to collect
data. IWE can not be used to collect data on machines that are not connected to the Internet.

What are the machine requirements for Inquisit 3 Web Edition?

The client must have a working Internet connection.

The client must be running Internet Explorer 4.0 or higher, or a browser based on Mozilla 1.0 or
higher (e.g. Firefox 1.5 or Netscape 8.0).

The client must have DirectX 2.0 or higher.

The client must be running Windows 98, ME, 2000, XP, or 2003. IWE will not run on Windows 95
or NT4 (actually, it might, but we no longer test these versions of Windows so they are not
officially supported). It will not run on any non-Windows operating systems. Sorry, no support
for Mac or Linux.

Internet Explorer security options must be con!gured to enable ActiveX controls that are a)
marked as “safe for scripting” and b) have a valid Authenticode signature. By default, Internet
Explorer has the appropriate settings, so this is a potential issue only for those who have
modi!ed their IE security settings.

Where can I get Inquisit 3 Web Edition?

All the components for both Inquisit 3 Desktop and Web are packaged together in a single
installer, which can be obtained from our download page. Simply download and install Inquisit 3
and you'll have everything you need to run experiments from the desktop or web. To unlock
Inquisit from evaluation mode, you'll need to purchase desktop or web licenses.

http://www.millisecond.com/user/webscripts.aspx
http://www.millisecond.com/user/webscripts.aspx
http://www.millisecond.com
http://www.millisecond.com
http://www.millisecond.com/download.aspx
http://www.millisecond.com/download.aspx

How to Run an Inquisit 3 Experiment on the Web

Inquisit 3 Web Edition allows you to launch your experiments directly from a web page. If you
have purchased a web license, you have the option of launching expeirments from your own
web site or from the millisecond.com web site. In either case, data are saved by default to the
millisecond.com data service where you can login and download the data !les.

If you haven't yet purchased a web license, you can still evaluate Inquisit 3 Web Edition by
setting up an experiment on your own web server. When evaluating Inquisit, you can launch and
run scripts as normal, but the data will not be saved.

Publishing Inquisit scripts on millisecond.com

Hosting your scripts on millisecond.com is the easiest option for those without experience
creating and administering web sites. For those with basic web development skills, this option
also includes some support for customizing the launch web page and subject number
assignment method. To publish a script on millisecond.com:

1. Write and test your Inquisit script using the Inquisit 3 Desktop Edition editor and tools.
2. Open your web browser and navigate to the millisecond.com web site.
3. Select "My Account" from the menu and click the "Register Inquisit Web Scripts" menu

item. If you are not already logged into the site, you will be prompted for your user name
and password.

4. Under the "Register Web Scripts" section, click the "Register New Script" link. This will
launch the Inquisit Web Script Wizard

5. The !rst page of the wizard asks whether you wish to host the experiment on
millisecond.com or on your own web server. Select the millisecond.com option. The click
the "Browse..." button and select your script !le from your local computer. Click next once
you have speci!ed the script !le.

6. On the next page you can upload additional !les used by the script such as pictures and
video.

7. Next, select whether you wish to use Inquisit's automatically generated launch page or
your own custom web page. The subsequent steps in the wizard allow you specify the
title, instructions, and how subject id numbers should be generated and assigned to
subjects.

8. When you are done, click the Finish button. That's it, your experiment is now online. You
can browse to the launch page using the following url:

http://research.millisecond.com/[username]/[script!lename].web

http://research.millisecond.com/%5Busername%5D/%5Bscriptfilename%5D.web
http://research.millisecond.com/%5Busername%5D/%5Bscriptfilename%5D.web

where [username] is your user id and [script!lename] is the original !lename of your script.
9. Click the "Start" link to launch your experiment.

Publishing Inquisit scripts on your own web server

Hosting experiments on your own server is an easy if you have access to a web server. To deploy
an Inquisit experiment to your web server, follow these steps:

1. Write and test your Inquisit script using the Inquisit 3 Desktop Edition editor and tools, or
download a script from the Inquisit Task Library .

2. Navigate to your web scripts page at http://www.millisecond.com/myaccount/
webscripts.aspx.

3. If the status of your web license is "pending", start your web license by clicking the "Start
Now" link.

4. Click the "Register New Script" link to launch the registration wizard and follow the steps
in the wizard.

5. On the !rst page of the wizard, select the option to host the experiment on your own
server, and enter the full url to the script !le on your server.

6. Continue through the wizard specifying the options you'd like for the launch page.
7. On the !nal Summary page of the wizard, click the "Download Launch Page" button and

save the html page to your computer. Then click the Finish button.
8. Upload your script !le and the launch page created above to the location on your web

server that you speci!ed when registering the script. If you script uses picture or other
media !les, be sure to upload those as well.

9. Direct participants to the launch web page to start the experiment.

Gathering Data Over the Web

Inquisit 3 enables you send data from the desktop machine running the experiment to a remote
server on the network. The ability to save data to a remote server is critical for experiments
conducted over the web because the experimenter often does not have access to the
participant's computer to retrieve any locally saved data !les. The feature can also be used with
Inquisit Desktop Edition, for example, in cases where it is more convenient to save the data to a
single location rather than having to copy the data !les from multiple computers in a classroom
or lab.

http://www.millisecond.com/download/samples/
http://www.millisecond.com/download/samples/
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx
http://www.millisecond.com/myaccount/webscripts.aspx

There are several options for saving data to a remote server.

1. Save the data to the millisecond.com web server where the experimenter can login and
download the !les.

2. Send the data to a web server via HTTP POST
3. Send the data to an FTP server
4. Save the data to a shared network (UNC) folder
5. Email the data as a an attachment to an email message.

Of couse, it is also possible for both web and desktop experiments to save the data to the local
machine in cases where the experiment is run on lab or classroom computers.

Option 1 (saving the data to millisecond.com) is the default behavior of Inquisit Web Edition
(IWE), and it is by far the most reliable and easiest solution. To protect against snoopers and
sniffers, data is encrypted and posted back to millisecond.com using Secure Sockets Layer (SSL),
the same technology used by online shopping and banking web sites to protect sensitive
information transmitted over the web. Each participant's data is saved to the server is a separate
!le. The experimenter can login and download the !les from the millisecond.com web site.
Again, the downloaded !les are encrypted over the network using SSL.

While option 1 is appropriate for the vast majority of experimenters, in some cases it may be
necessary or desirable to leverage some of the other remote data features of Inquisit. The means
by which data is saved to a server is controlled by the following attributes on the data element.

<data>
/ encrypt = true | false
/ !le = "!le path"
/ password = "password"
/ userid = "userid"
</data>
Encrypt speci!es whether Inquisit should !rst encrypt the data before being sending it back to
the server. If the data is being saved over SSL, this command can be set to "false" since the data
will be encrypted using standard web protocols. If SSL is not an option, this command should be
set to "true" to obfuscate potentially sensitive data from being compromised by hackers and
packet sniffers as it travels over the network. Encrypted data !les are saved with the "inq"
extension. Unencrypted data !les have the "dat" extenstion.

http://www.millisecond.com/user/datafiles.aspx
http://www.millisecond.com/user/datafiles.aspx
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/datafile.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/datafile.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/password.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/password.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/userid.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/userid.htm

The !le attribute speci!es the location to which the data is saved. This can be any of the
following:

• Http or https address (e.g., https://www.millisecond.com/). Inquisit uses the HTTP POST
protocol to send the data back to the web server. Most web development technologies
(PHP, ASP, ASP.NET, JSP) have easy to use methods for extracting data that has been
posted to the server.

• Ftp address (e.g., ftp://www.millisecond.com/mydata/). Inquisit uses the standard FTP
protocol to save !les to a folder on an ftp server.

• Unc path (e.g., \\millisecond\mydata\). If you are running the experiment inside a LAN,
you can save the data to a writeable network share.

• Local path (e.g., c:\inquisit\mydata\). Inquisit saves the data to the speci!ed path on the
client computer.

If you specify a folder with no !le name, Inquisit will default the !le name to that of the script !le.
Otherwise, it will use the speci!ed !le name. So as not to overwrite other data !les on the server,
Inquisit also appends the date and time (to the nearest millisecond) to the !le name along with
the "dat" or "inq" !le extension depending whether encryption is turned on.

The userid and password attributes allows you to specify login credentials to use when accessing
the web, ftp, unc, or mail server. It is not necessary to specify the userid or password when saving
the data to millisecond.com.

When saving data to a remote server, Inquisit creates separate data !les for each run of the script
as opposed to appending the data to a single !le as it does in the case of saving to a local folder.
This is to avoid potential collisions that might occur when multiple clients attempt to save to the
server at the same time. You can combine multiple data !les into a single !le by selecting the
"Open" command on Inquisit's !le menu and multi-selecting all of the !les you wish to combine.
Inquisit will open all of the selected !les, appending them together. You can then select the
"Save As" command on Inquisit's File menu to save the combined data into a single !le.

Note that data collection capabilities of both Inquisit Web Edition (IWE) and Inquisit Desktop
Edition (IDE) are disabled unless a license has been purchased.

https://www.millisecond.com/
https://www.millisecond.com/
http://www.millisecond.com/mydata/
http://www.millisecond.com/mydata/

Security and Inquisit 3 Web Edition

Running experiments and gathering data over the internet introduces potential security issues
that may not exist when running experiments on tightly controlled lab computers. Without
taking the proper security precautions, it may be possible for "snoopers" to browse your scripts
and data !les. This could be a big problem for scripts that contain login credentials, or for data
!les containing con!dential or sensitive data. Malicious hackers could even delete your scripts
and data. Obviously, that's not a good thing.

Inquisit has several security features, described below, that enable you to protect your assets.

Protecting your scripts

In order for Inquisit Web Edition to be able to load your scripts from the web, they must be
placed on a web server, where it is potentially accessible to anyone with an internet connection.
Inquisit supports two strategies for preventing unwanted access to your scripts. First, you can
con!gure the web server to provide access only to authenticated, authorized users. In this case,
users will receive a login prompt when Inquisit loads the script, and they must enter a valid
userid and password to continue. Second, you can obfuscate the script using Inquisit's built in
password encryption system. Anyone who attempts to open the script with Inquisit must !rst
supply the password used to encrypt it. If they attempt to view the script in any other program,
they will see nothing but garbage characters.

Authentication Methods

There are a number of different authentication schemes used by web servers to protect content
from anonymous access. The following schemes are supported by Inquisit.

Basic Authentication

When Inquisit attempts to load protected content, the server sends a message indicating that
authorized credentials are required, and Inquisit will prompt the user for a username and
password. If the user supplies credentials, they sent the server, which determines if they are valid
and provides access to the content accordingly. Basic authentication works over !rewalls, and is
widely supported by almost all browsers and web servers. An important caveat is that the userid
and password are sent over the network in plain (unencrypted) text, which means they could be
read by someone with a packet sniffer. Basic Authentication by itself should not be used for any
content that requires real security. However, Basic Authentication used in combination with SSL
(otherwise known as HTTPS) is a secure alternative.

Digest Authentication

Like Basic Authentication, when Inquisit attempts to load a script using Digest Authentication,
the user must supply a valid userid and password in order to continue. The advantage of Digest
Authentication is that the credentials are encrypted before being sent over the network, so they
are not vulnerable to packet sniffers. It can also be used to for authentication across a !rewall.
Digest Authentication is an open standard that is supported by most browsers and web servers.

Integrated Windows Authentication (NTLM)

Windows Integrated Authentication, also known as NTLM, provides another secure way to
protect your script. This method protects login credentials by a sophisticated series of
handshakes between the client and the web server. Mozilla added support for NTLM in version
1.4, so it is now supported by Firefox and Netscape (as well as IE).

Con!guring Authenticated Access to Scripts on the Web Server

To protect your content from unauthorized access, you must place it in a protected folder on
your web server. Most web servers have fairly simple setups for protecting a folder. For example,
with the Apache web server you can protect the content in a folder using basic or digest
authentication by adding a special password !le to the folder.

With Microsoft's IIS web server, you can lock down a folder through IIS Manager by right-clicking
the folder, selecting Properties, and clicking on the Directory Security tab. From there you can
launch the following window. By default, folders allow anonymous access, which means anyone
can browse the content. By unchecking this box and checking one of the other options, you and
protect the folder.

Encrypting Your Scripts

Encrypting your scripts is another way to prevent unwanted snoopers, whether you are running
experiments in a lab or over the web. An encrypted script can not be read unless the user has the
password that was used to encrypt it. If you don't have the password, the script is illegible.

Importantly, for web research encryption should be considered a deterrent, not a foolproof security
mechanism. The reason is that in order for the Inquisit Web Control to read the encrypted script, it
needs to know the password. Thus, you will need to include password in the web page used to
launch the file. A clever hacker could figure out that the password specified in the launch page is the
same one required to read the script file.

See Introducing Inquisit 3 Web Edition for details on how to provide the password to the Inquisit
Web Control.

Protecting your data files on the server.

By default, Inquisit Web Edition (IWE) saves the data to the millisecond.com web server. IWE uses
SSL to encryt the data before sending it over the wire so that it is protected from network sniffers.
Once the data has been saved to the server, you must login to the web server using your Millisecond
userid and password in order to access the data files. Without the userid and password, the data files
can not be accessed. Using the Millisecond Data Service is the easiest and most secure option for
saving data over the web.

Inquisit also supports saving data back to another web server using HTTP POST, or to an ftp server.
In either case, you can protect the server (or the particular folder on the server) where you intend to
save the data files using basic authentication. You can then specify the userid and password required
by Inquisit to access the server in the data element in your script. If your script contains a userid and
password for accessing your data file share, you should always save it as an encrypted inq file rather
than a plain text exp file.

Whenever saving data to a web or ftp site, it is good practice to move the files to a more secure
location (e.g., not accessible from the internet) as frequently as possible. Ideally, you should write
an automated process that moves the files according to a regular interval, or better yet, whenever it
detects that a new data file was created.

Alternatively, Inquisit allows you to email the data file to the email address of your choosing. The
nice thing about this approach is that you don't have to worry about putting login credentials in your
script where someone could potentially see them. Make sure you have enough space in your
mailbox and that your spam filter doesn't mistakenly strip out the data file attachments.

If your data files contain sensitive information, you can instruct Inquisit to automatically encrypt
using the encrypt attribute of the data element. This is a useful privacy mechanim for data gathered
over the web or on the desktop. Again, do not forget the password that was used to encrypt the data
file, or your data will be lost.

http://www.millisecond.com/support/docs/v3/html/articles/inquisitweb.htm
http://www.millisecond.com/support/docs/v3/html/articles/inquisitweb.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm

Encrypting Your Scripts

Encrypting your scripts is another way to prevent unwanted snoopers, whether you are running
experiments in a lab or over the web. An encrypted script can not be read unless the user has the
password that was used to encrypt it. If you don't have the password, the script is illegible.

Importantly, for web research encryption should be considered a deterrent, not a foolproof
security mechanism. The reason is that in order for the Inquisit Web Control to read the
encrypted script, it needs to know the password. Thus, you will need to include password in the
web page used to launch the !le. A clever hacker could !gure out that the password speci!ed in
the launch page is the same one required to read the script !le.

See Introducing Inquisit 3 Web Edition for details on how to provide the password to the Inquisit
Web Control.

Protecting your data !les on the server.

By default, Inquisit Web Edition (IWE) saves the data to the millisecond.com web server. IWE uses
SSL to encryt the data before sending it over the wire so that it is protected from network
sniffers. Once the data has been saved to the server, you must login to the web server using your
Millisecond userid and password in order to access the data !les. Without the userid and
password, the data !les can not be accessed. Using the Millisecond Data Service is the easiest
and most secure option for saving data over the web.

Inquisit also supports saving data back to another web server using HTTP POST, or to an ftp
server. In either case, you can protect the server (or the particular folder on the server) where you
intend to save the data !les using basic authentication. You can then specify the userid and
password required by Inquisit to access the server in the data element in your script. If your
script contains a userid and password for accessing your data !le share, you should always save it
as an encrypted inq !le rather than a plain text exp !le.

Whenever saving data to a web or ftp site, it is good practice to move the !les to a more secure
location (e.g., not accessible from the internet) as frequently as possible. Ideally, you should write
an automated process that moves the !les according to a regular interval, or better yet,
whenever it detects that a new data !le was created.

Alternatively, Inquisit allows you to email the data !le to the email address of your choosing. The
nice thing about this approach is that you don't have to worry about putting login credentials in
your script where someone could potentially see them. Make sure you have enough space in
your mailbox and that your spam !lter doesn't mistakenly strip out the data !le attachments.

http://www.millisecond.com/support/docs/v3/html/articles/inquisitweb.htm
http://www.millisecond.com/support/docs/v3/html/articles/inquisitweb.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm

If your data !les contain sensitive information, you can instruct Inquisit to automatically encrypt
using the encrypt attribute of the data element. This is a useful privacy mechanim for data
gathered over the web or on the desktop. Again, do not forget the password that was used to
encrypt the data !le, or your data will be lost.

Assigning Subject Numbers in Web Experiments

Subject numbers play a number of important roles in experiments. In longitudinal studies, they
can be used to correlate data gathered from a subject at different times. For experiments with
between-subject variables, subject numbers play a critical role in assigning participants into
particular conditions. By using identi!cation numbers such as student ids or telephone numbers,
the subject number can also allow researchers to identify participants in cases where the
research makes that necessary.

For traditional lab research, managing subject numbers with Inquisit is straightforward. The
experimenter starts the Inquisit script and either enters the subject number herself, or she
instructs the participant to enter the number. With web research, participants may be located
anywhere in the world, in which case there is no experimenter overseeing the data collection
session who can assign the appropriate subject number. In these cases, it is necessary to devise a
system in which either participants can specify the number themselves, or the number is
automatically assigned by the web site. This article will discuss several strategies for assigning
subject numbers to web participants.

Subject numbers for between-subject variables

One of the most common uses of subject numbers by Inquisit is to assign subjects into a
particular cell of a between-subjects variable. Subject numbers are mapped to conditions within
the Inquisit script itself, either by the expt or the variables element. For example, in Figure 1
below the script uses the expt element to counterbalance the order of two blocks across even
and odd numbered subjects:

Figure 1.

<expt>
/ subjects = (1 of 2)
/ blocks = [1=conditiona; 2=conditionb]
</expt>

<expt>
/ subjects = (2 of 2)
/ blocks = [1=conditionb; 2=conditiona]
</expt>

http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/attributes/encrypt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/data.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/expt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/expt.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/variables.htm
http://www.millisecond.com/support/docs/v3/html/language/elements/variables.htm

In most cases, the researcher wants to ensure that subjects are randomly assigned into the even
or odd numbered group, and they want equal numbers of subjects in each condition.

Subject number assignment for scr ipts hosted on
millisecond.com

If you choose to host your script on the millisecond.com server, there are several options for
generating subject numbers that you can choose from: random generation, random generation
without replacement, sequential, user entered, and user entered with con!rmation prompt. You
simply choose which option you want when running the Script Registration Wizard. There's no
need to understand the technical details of how these work.

Subject number assignment for scripts hosted on other servers

If you are hosting the script on your own server, you can select from 3 different sample pages to
use as a starting point for your launch page. The sample pages are all linked to from here: http://
www.millisecond.com/web/samplelaunch.aspx.

Random Assignment of Subject Numbers

The !rst sample page shows random generation of subject nunbers, which is the simplest way to
achieve a random, approximately even distribution of subjects into different conditions. Let's
take a look at how the reference page randomly assigns subject numbers. (You can see this !rst
hand by browsing to the page and viewing the underlying source.) The !rst thing to note is the
following section of JavaScript at the top of the page source:

In the source code for the page is a javascript method called "GetSubjectNumber" that is
responsible for generating the subject number. For random generation, the method looks like
this:

Figure 2.
function GetSubjectNumber()
{
 return (Math."oor(Math.random() * 1000000000));
}

http://www.millisecond.com/web/samplelaunch.aspx
http://www.millisecond.com/web/samplelaunch.aspx
http://www.millisecond.com/web/samplelaunch.aspx
http://www.millisecond.com/web/samplelaunch.aspx

The method contains a single line of code does the work of randomly generating the subject
number. The function uses the javascrip method , Math.random(), to generate a random number
from 0 to 1, then multiples that value by 1,000,000,000 and rounds it down to the nearest integer
so that the !nal result is a random number between 1 and 1,000,000,000. Note that we are
selecting numbers with replacement, so it is theoretically possible that two participants might
be assigned the same subject number. However, the chances are slim indeed, and if it does
happen, you can use the time of the session as logged in the "date" and "time" data columns to
distinguish the subjects' data.

Prompting participants to enter a subject number

For some experiments, it may be necessary or convenient to use personal identi!cation such as a
telephone number, social security number, or student id as the subject number rather than an
arbitrary, randomly generated number. To administer this kind of experiment over the web, the
participant must be allowed to input their id number so that it can be recorded along with the
data. The second option allow you to prompt the participant to enter an id number. The third
option has the subject enter the number twice to avoid keying errors.

Let's take a look at the javascript for the third option, which is the more complicated method. In
this case, the GetSubjectNumber() method contains the following javascript code, which
prompts the subject to enter a 5 digit number, then prompts again to con!rm the number, and
provides error feedback if the number is invalid or they don't match.

Figure 3.

function GetSubjectNumber()
{
// This method prompts the subject for an id number and then prompts
 again to // con!rm in order avoid mistyped numbers.

var intRegExp = /(^\d{5,5}$)/;
var promptMsg = "Please enter a 5 digit id number.";
var con!rmMsg = "Please con!rm the number you entered.";
var invalidMsg = "The number was invalid. Please enter a valid number.";
var matchMsg = "The numbers you entered did not match. Please enter the number again.";

var snum = window.prompt(promptMsg, "");

while (snum != null && intRegExp.test(snum) == false)
{
// if the input was invalid, prompt again
 window.alert(invalidMsg);
 snum = window.prompt(promptMsg, "");
}

if (snum == null)
{
 return null;
}

var scon!rm = window.prompt(con!rmMsg, "");
while (scon!rm != null && (scon!rm != snum || intRegExp.test(scon!rm) == false))
{
 // if the input was invalid, prompt again
 if (intRegExp.test(scon!rm) == false)
 {
 window.alert(invalidMsg);
 }

 // if the numbers do not match, alert the user and bail out so
 they can start over
 else if (scon!rm != snum)
 {
 window.alert(matchMsg);
 return null;
 }

 scon!rm = window.prompt(con!rmMsg, "");
}

return scon!rm;

}
The validation is done through the regular expression in the !rst line of code. You can change
the validation by replacing the regular expression (which only veri!es that the input is numeric
and 5 digits long) with your own. If you don't understand regular expressions, don't worry, the
web is abundant with ready made regular expressions for validating all kinds of input (integers,
zip codes, telephone numbers, etc.). I found this one in seconds through Google.

Customized subject number generation

If you wish to use your own method for generating subject numbers, you can do so simply by
editing the GetSubjectNumber() method in the source code. Remember, this javascript code
runs on the participant's machine, not on the server, so it has no way to keep track of which
subject numbers have already been assigned. For that, you would have to program some server
code that tracks subject numbers in a database, then dynamically injects the subject number
into this web page, and in particular, into the GetSubjectNumber(). If you host your scripts on
millisecond.com, this is how the hosting service is able to generate sequential subject numbers
and random selection without replacement.

These are just a few of the strategies for assigning subject numbers on the web. They are by no
means the only techniques possible. Other strategies include deriving subject numbers from the
date and time, the ip address of the client computer, or the session id. For those with some
familiarity with web development, the web is an "exible and open programming environment
that makes any number of schemes possible.

LANGUAGE REFERENCE
see http://www.millisecond.com/support/docs/v3/index.htm

http://www.millisecond.com/support/docs/v3/index.htm
http://www.millisecond.com/support/docs/v3/index.htm

